CFD Analysis of Static Pressure on the Casing of Taker-In in Carding Machine

2011 ◽  
Vol 66-68 ◽  
pp. 504-509
Author(s):  
Xian Guo Han ◽  
Peng Zi Sun ◽  
Ye Ping Zhao ◽  
Ji Peng Cao

This paper gives a model of using CFD to calculate the airflow between taker-in and its casing in the A186 carding machine for researching static pressure of the airflow with FLUENT software. The model analyzes the static pressure in the casing of taker-in under the condition of the different rotation speeds of taker-in and cylinder and two gauges in air inlet of the casing. The numerical calculation of the model shows that the rotation speed of taker-in and cylinder has an obvious influence on the static pressure of the casing, of which the effect of rotation speed of taker-in is larger than that of cylinder, and the static pressure increases gradually from air inlet to outlet between taker-in and its casing. Furthermore, the calculation results confirm that while the gauge of the air inlet diminish, the static pressure of the air inlet decreases but that of the air outlet has little change. The calculation result of the model has a good agreement with the conclusion of previous study with the experimental method.

2012 ◽  
Vol 239-240 ◽  
pp. 305-309
Author(s):  
Fang Guo ◽  
Zhi Li

This paper studies the numerical calculation method of mutual inductance between two superconducting pancake coils. And the calculation results are proved through experiment. Use this calculation method, the isoline map of two superconducting pancake coils’ coupling coefficient with the different spatial distributions is calculated. Then the designer can rapidly design the spatial distribution of superconducting pancake coils according to the coupling coefficient they needs. Specially, there is a curve of coupling coefficient equals 0 in the isoline ma. For the occasions which want to eliminate the mutual inductance between two superconducting pancake coils, this curve can provide a good guidance for design a compact layout and reduce the volume. Finally, the 0 value curve is tested under the guidance of calculation result. Through this experiment, the correctness and engineering guidance of isoline map is verified.


2019 ◽  
Vol 24 (6) ◽  
pp. 128-133
Author(s):  
Monika Andrych-Zalewska ◽  
Łukasz Wielki ◽  
Krzysztof Ziora

The article presents CFD (Computational Fluid Dynamics) analysis of the intake system of a Ferrari 348 GTC sports car. With this system, an adequate amount of air is supplied relative to the current demand for fuel combustion. The air demand of a given engine was deter-mined, then analyzes were carried out. The article contains an analysis of the velocity distribution: total velocities, angular velocities and static pressure distribution. In addition, local velocity and flow in the filtration chamber were determined along with the flow directions and returns as well as power lines. The cycle impact on the temperature, locations of the highest speed drop, increase in turbulence, the largest pressure differences, and modulus of elasticity were determined. This information allows to assess whether there are no unwanted phenomena occurring in the system, such as flow disturbances. The Ansys Fluent software was used for analysis.


2018 ◽  
Vol 1 (2) ◽  
pp. 24-39
Author(s):  
A. Farid ◽  
A. Abou El-Azm Aly ◽  
H. Abdallah

Cavitation in pumps is the most severe condition that centrifugal pumps can work in and is leading to a loss in their performance.  Herein, the effect of semi-open centrifugal pump side clearance on the inception of pump cavitation has been investigated.  The input pump pressure has been changed from 80 to 16 kPa and the pump side clearance has been changed from 1 mm to 3 mm at a rotation speed of 1500 rpm. It has been shown that as the total input pressure decreased; the static pressure inside the impeller is reduced while the total pressure in streamwise direction has been reduced, also the pump head is constant with the reduction of the total input pressure until the cavitation is reached. Head is reduced due to cavitation inception; the head is reduced in the case of a closed impeller with a percent of 1.5% while it is reduced with a percent of 0.5% for pump side clearance of 1mm, both are at a pressure of 20 kPa.   Results also showed that the cavitation inception in the pump had been affected and delayed with the increase of the pump side clearance; the cavitation has been noticed to occur at approximate pressures of 20 kPa for side clearance of 1mm, 18 kPa for side clearances of 2mm and 16 kPa for 3mm.


1984 ◽  
Vol 106 (2) ◽  
pp. 306-312
Author(s):  
S. K. Mao ◽  
D. T. Li

A streamline curvature method for calculating S1 surface flow in turbines is presented. The authors propose a simple method in which a domain of calculation can be changed into an orderly rectangle without making coordinate transformations. Calculation results obtained on subsonic and transonic turbine cascades have been compared with those of experiment and another theory. Good agreement has been found. When calculating blade-to-blade flow velocity at subsonic speed, a function approximation technique can be used in lieu of iteration method in order to reduce calculation time. If the calculated flow section is of a mixed (subsonic-supersonic) flow type, a Boolean expression obtained from the truth table of flow states is proposed to judge the integrated character of the mixed flow section. Similarly, another Boolean expression is used to determine whether there exists a “choking” of the relevant section. Periodical conditions are satisfied by iterating the first-order derivative of stagnation streamline, which is formed simultaneously. It can be proved that the stagnation streamline formed in this way is unique.


2012 ◽  
Vol 535-537 ◽  
pp. 697-700
Author(s):  
Zhong Feng Guo ◽  
Jun Hong Hu ◽  
Xue Yan Sun

Roll wear model for Hot Strip Mill (HSM) was researched and the factors affect roll wear are analyzed. The simulation program was compiled by program visual C++ language and work roll wear was calculated according to the rolling schedule. Calculation results shows that roll wear like box shape. Strip width affects roll wear clearly. The strip length is one of the important issues which affect roll wear. Work roll wear of F7 top roll middle get to 280μm after a rolling schedule. Roll wear curve calculated by program were good agreement with the wear curve got by high-precision grinder. The results show that the roll wear model has high accuracy.


2021 ◽  
Author(s):  
S. J. van der Spuy ◽  
D. N. J. Els ◽  
L. Tieghi ◽  
G. Delibra ◽  
A. Corsini ◽  
...  

Abstract The MinWaterCSP project was defined with the aim of reducing the cooling system water consumption and auxiliary power consumption of concentrating solar power (CSP) plants. A full-scale, 24 ft (7.315 m) diameter model of the M-fan was subsequently installed in the Min WaterCSP cooling system test facility, located at Stellenbosch University. The test facility was equipped with an in-line torque arm and speed transducer to measure the power transferred to the fan rotor, as well as a set of rotating vane anemometers upstream of the fan rotor to measure the air volume flow rate passing through the fan. The measured results were compared to those obtained on the 1.542 m diameter ISO 5801 test facility using the fan scaling laws. The comparison showed that the fan power values correlated within +/− 7% to those of the small-scale fan, but at a 1° higher blade setting angle for the full-scale fan. To correlate the expected fan static pressure rise, a CFD analysis of the 24 ft (7.315 m) diameter fan installation was performed. The predicted fan static pressure rise values from the CFD analysis were compared to those measured on the 1.542 m ISO test facility, for the same fan. The simulation made use of an actuator disc model to represent the effect of the fan. The results showed that the predicted results for fan static pressure rise of the installed 24 ft (7.315 m) diameter fan correlated closely (smaller than 1% difference) to those of the 1.542 m diameter fan at its design flowrate but, once again, at approximately 1° higher blade setting angle.


2011 ◽  
Vol 287-290 ◽  
pp. 1896-1901
Author(s):  
Zhi Kun Guo ◽  
Wan Xiang Chen ◽  
Qi Fan Wang ◽  
Yu Huang ◽  
Chao Pu Li ◽  
...  

The bearing capacities of one-way reinforced concrete beams with elastic supports are investigated in this paper. According to the nonlinear characteristics of the beams, the basic equations based on plastic theory of concrete are derived by considering the in-plane force effects that aroused by the constraints of supports when the beams deforming. It is indicated that the calculation results are in good agreement with experimental datum, and the influences of different supports on the bearing capacities of the beams are quantitatively given for the first time.


2007 ◽  
Vol 546-549 ◽  
pp. 447-450
Author(s):  
Tian Mo Liu ◽  
Hong Yi Zhou ◽  
Fu Sheng Pan

In the present work Miedema model has been developed, and the formation enthalpy of Mg-Zn alloys and the activity curve of Zn in Mg-Zn alloy at 1000K have been calculated according to the Miedema model. The calculation results showed that the formation enthalpy of Mg-Zn was small, and the excess entropy attributes a lot to the result. When excess enthopy was considered, the calculation results were found to be in good agreement with the experimental values.


Author(s):  
A. A. Adegbola ◽  
O. A. Adeaga ◽  
A. O. Babalola ◽  
A. O. Oladejo ◽  
A. S. Alabi

Air conditioning systems have condensers that remove unwanted heat from the refrigerant and transfer the heat outdoors. The optimization of the global exploit of heat exchanging devices is still a burdensome task due to different design parameters involved. There is need for more and substantial research into bettering cooling channel materials so as to ensure elevated performance, better efficiency, greater accuracy, long lasting and low cost heat exchanging. The aim of this research work is to improve the heat transfer rate of air conditioning condenser by optimizing materials for different tube diameters. Simulations using thermal analysis and Computational Fluid Dynamic (CFD) analysis were carried out to determine the better material and fluid respectively. The analysis was done using Analysis System software. Different parameters were calculated from the results obtained and graphs are plotted between various parameters such as heat flux, static pressure, velocity, mass flow rate and total heat transfer. The materials used for CFD analysis are R12 and R22, and for thermal analysis are copper and aluminium. From the CFD analysis, the result shows that R22 has more static pressure, velocity, mass flow rate and total heat transfer than R12 at condenser tube diameter 6 mm. In thermal investigation, the heat flux is more for copper material at condenser tube diameter 6 mm. Copper offers maximum heat flux. Also, refrigerant R22 scores maximum for the heat transfer criteria, but cannot be recommended due to toxicity


Author(s):  
Agarwal A ◽  
◽  
Pitso I ◽  
Letsatsi M.T ◽  
◽  
...  

With increase in energy requirement, the researchers are looking for energy efficient passive ventilation techniques. The current design concept is based on environment sustainability and use of renewable energy sources is preferred over conventional energy sources. The current research investigates the wind catcher design with cooling pads using techniques of Computational Fluid Dynamics. The CAD model of wind catcher is designed using Creo design software and CFD analysis is conducted using ANSYS CFX software. The CFD analysis is directed at different air inlet velocities and SSG Reynolds stress turbulence model under steady state thermal conditions for both side open design and singe side open designs. The cooling pads have successfully reduced temperature up to 1.65 degrees for single side opening and 2.86 degrees for double side opening design. Maximum air flow rate is achieved with higher air inlet velocities for both design types.


Sign in / Sign up

Export Citation Format

Share Document