An Investigation of the Effect of 2T Oil Blend on Spark Ignition Engine Performance

2014 ◽  
Vol 663 ◽  
pp. 289-293
Author(s):  
M. Nurhidayat Zahelem ◽  
A. Siti Rohana ◽  
N. Haniza B. Jemily ◽  
M. Amzari Aris ◽  
Shukri Zain ◽  
...  

This paper presents the results of an investigation on the effect of 2T oil blend on the performance of Spark Ignition (SI) engine. Three different types of 2T-oils; mineral oil, semi-synthetic oil and fully synthetic oil were tested according to blend ratio before the mixing process with fuel in the carburetor. In the experiment, a two-stroke single-cylinder engine was coupled to a 20 kW generator dynamometer to measure engine performance parameters; engine torque, engine power (B.P), brake thermal efficiency (BTE), brake specific fuel consumption (BSFC) and brake mean effective pressure (BMEP) at various engine speeds with maximum engine load. The results show correlation between engine performances and 2T-oil blended as a function of type of 2T-oils used.

2013 ◽  
Vol 315 ◽  
pp. 354-358 ◽  
Author(s):  
Shukri Zain ◽  
Shuib Husin

This paper presents the results of an investigation on the effect of air filter elements on the performance of Spark Ignition (SI) engine. Three different types of material; paper, cotton and foam were tested as filtering element in the air filter before the mixing process with fuel in the carburettor. In the experiment, a four-stroke single-cylinder engine was coupled to a 20kW generator dynamometer to measure engine performance parameters; engine torque, engine power (B.P), brake thermal efficiency (BTE), brake specific fuel consumption (BSFC) and brake mean effective pressure (BMEP) at various engine speeds with maximum engine load. The results show correlation between engine performance and the qualities of filtered air as a function of type of air filter element/material used.


2014 ◽  
Vol 663 ◽  
pp. 354-358
Author(s):  
Shukri Zain ◽  
M. Nurhidayat Zahelem ◽  
M. Hisyam Basri

This paper presents the results of an investigation on the effect of air filter elements on the performance of spark ignition (SI) engine. Three different types of material; paper, cotton and foam were tested as filtering element in the air filter before the mixing process with fuel in the carburettor. In the experiment, a four-stroke single-cylinder engine was coupled to a 20 kW generator dynamometer to measure engine performance parameters; engine torque, engine power (B.P), brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) at various engine speeds with maximum engine load. The results show correlation between engine performance and the qualities of filtered air as a function of type of air filter element/material used.


2013 ◽  
Vol 465-466 ◽  
pp. 443-447
Author(s):  
Shukri Zain ◽  
Shaari M. Fazri

Considering the enhancement device for air intake systems have been widely available in the market for automotive engines, in this paper, the effect of Supercharged Air Filter (SAF) system on a Spark Ignition (SI) engine were experimentally investigated. Three different types of air filter; standard, conical shape air filter and SAF were tested on a four-stroke single-cylinder engine. The engine was coupled to a 20kW generator dynamometer to measure engine performance parameters; engine torque, engine power (B.P), brake thermal efficiency (BTE), brake specific fuel consumption (BSFC) and brake mean effective pressure (BMEP) at various engine speeds with maximum engine load. The results show that the forced induction system can affect the engine performance but it will make the engines fuel consumption higher than standard system.


Author(s):  
Hailin Li ◽  
Ghazi A. Karim ◽  
A. Sohrabi

The operation of spark ignition (SI) engines on lean mixtures is attractive, in principle, since it can provide improved fuel economy, reduced tendency to knock, and extremely low NOx emissions. However, the associated flame propagation rates become degraded significantly and drop sharply as the operating mixture is made increasingly leaner. Consequently, there exist distinct operational lean mixture limits beyond which satisfactory engine performance cannot be maintained due to the resulting prolonged and unstable combustion processes. This paper presents experimental data obtained in a single cylinder, variable compression ratio, SI engine when operated in turn on methane, hydrogen, carbon monoxide, gasoline, iso-octane, and some of their binary mixtures. A quantitative approach for determining the operational limits of SI engines is proposed. The lean limits thus derived are compared and validated against the corresponding experimental results obtained using more traditional approaches. On this basis, the dependence of the values of the lean mixture operational limits on the composition of the fuel mixtures is investigated and discussed. The operational limit for throttled operation with methane as the fuel is also established.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Aan Yudianto ◽  
Peixuan Li

The proper design of the flywheel undeniably determines in tuning the engine to confirm the better output engine performance. The aim of this study is to mathematically investigate the effect of various values of the compression ratio on some essential parameters to determine the appropriate value for the flywheel dimension. A numerical calculation approach was proposed to eventually determine the dimension of the engine flywheel on a five-cylinder four-stroke Spark Ignition (SI) engine. The various compression ratios of 8.5, 9, 9.5, 10, 10.5, and 11 were selected to perform the calculations. The effects of compression ratio on effective pressure, indicated mean effective pressure (IMEP), dynamic irregularity value of the crankshaft, and the diameter of the flywheel was clearly investigated. The study found that 2.5 increment value of the compression ratio significantly increases the effective pressure of about 41.53% on the starting of the expansion stroke. While at the end of the compression stroke, the rise of effective pressure is about 76.67%, and the changes in dynamic irregularity merely increase by about 1.79%. The same trend applies to the flywheel diameter and width, which increases 2.08% for both.


2017 ◽  
Vol 169 (2) ◽  
pp. 71-75
Author(s):  
Marlena OWCZUK ◽  
Anna MATUSZEWSKA ◽  
Małgorzata ODZIEMKOWSKA ◽  
Mateusz BEDNARSKI ◽  
Marcin WOJS ◽  
...  

The article presents an overview of methods for the production of bioethanol and the possibility of its use to power internalcombustion engines. The effects of supplying spark-ignition engine with bioethanol having various degrees of hydration were examined experimentally on the engine dynamometer. The measurement results were referred to the anhydrous bioethanol, which is used widely as petrol biocomponent and compared in terms of the course of the pressure in the combustion chamber of the engine as well as engine performance parameters – torque and power. It was found that with the decrease in alcohol concentration, the performance of the sparkignition engine deteriorated. The reduction of in-cylinder pressure was proportional to the increase in the water content in the fuel. No significant changes in the general shape of in-cylinder pressure curves were observed. Engine torque and power decreased with an increase in the water content in the fuel, especially at high engine speed. It has been stated that supplying the engine with bioethanol containing up to 6% (v/v) of water does not result in significant losses in engine performance.


Author(s):  
Sachin Kumar Gupta ◽  
Mayank Mittal

Biogas is a promising alternative fuel to reduce the consumption of petroleum-based fuels in internal combustion (IC) engines. In this work, the effect of various biogas compositions on the performance, combustion, and emission characteristics of a spark-ignition (SI) engine is investigated. Additionally, the effect of Wobbe index (WI) of various fuel compositions was also evaluated on the operational limits of the engine. While considering a wide range of biogas compositions (including bio-methane), the percentage of carbon dioxide (CO2) (in a blend of methane and CO2) was increased from 0 to 50% (by volume). A single-cylinder, water-cooled, SI engine was operated at 1500 rpm over a wide range of operating loads with compression ratio of 8.5:1. With the increase in WI of the fuel, both low (limited by coefficient of variation (COV) of indicated mean effective pressure (IMEP)) and high (limited by pre-ignition) operating loads were decreased; however, it was found that the overall operating range was increased. Results also showed that for a given operating load, with the increase of CO2 percentage in the fuel, the brake thermal efficiency was decreased, and the flame initiation and combustion durations were increased. The brake thermal efficiency was decreased from 16.8% to 13.7%, when CO2 was increased from 0% to 40% in methane–CO2 mixture at 8 N·m load. Concerning to emissions, a considerable decrease was noted in nitric oxide, whereas hydrocarbon, carbon monoxide and carbon dioxide emissions were increased, with the increase in CO2 percentage.


Author(s):  
Suleyman Simsek ◽  
Samet Uslu ◽  
Hatice Simsek

The major aim of the research is to investigate the ability of biogas as an alternative fuel for gasoline-powered Spark Ignition (SI) engine. In this study, biogas/gasoline fuel mixtures containing different ratios of biogas, gasoline, and biogas were tested in an SI engine with an increased compression ratio at different engine loads and constant engine speed. According to the comparison with gasoline, the utilization of biogas generally decreased the Brake Thermal Efficiency (BTE), while the Brake Specific Fuel Consumption (BSFC) rose. The lowest BTE and the highest BSFC were obtained with 100% biogas. Compared to gasoline, a decrease of 16.04% and an increase of 75.52% were observed, respectively. On the other hand, the use of biogas has improved all emissions. The best emission values were obtained with 100% biogas. Compared to gasoline, Carbon monoxide (CO), HydroCarbon (HC), and Nitrogen Oxide (NOx) emissions decreased by 56.42%, 63%, and 48.96%, respectively. Finally, according to the results of the combustion analysis, the peak pressures were reduced with the utilization of biogas, and the position of the peak pressure shifted by 2° to 3° Crank Angle (CA). Compared to gasoline, the lowest pressure was obtained with 100% biogas, resulting in a reduction of approximately 24.69%.


2019 ◽  
Vol 8 (4) ◽  
pp. 10953-10956

Experimental investigations were conducted to study the feasibility of alcohol (Ethanol) and its blends with petrol at varying proportions from 0 to 100% in a single cylinder diesel engine converted to operate in spark ignited (SI) mode. Performance and emission characteristics of the SI engine was evaluated and compared with base line petrol operation. Addition of ethanol to petrol provides lower carbon monoxide (CO), hydrocarbon (HC) and nitric oxide (NOx ) emissions. Among all blend ratio performance results E75 shows overall improved engine performance with increased brake thermal efficiency (BTE) with lower emissions.


Author(s):  
M. V. S. Murali Krishna ◽  
Ch. Indira Priyadarsini ◽  
P. Ushasri ◽  
P. V. K. Murthy ◽  
D. Baswaraju

Investigations were carried out to evaluate the performance of two stroke and four stroke of single cylinder, spark ignition (SI) engines having copper coated engine [CCE, copper-(thickness, 300 μ)] coated on piston crown and inner side of cylinder head] provided with catalytic converter with sponge iron as catalyst with methanol blended gasoline (80% gasoline and 20% methanol by volume) and compared with conventional engine (CE) with pure gasoline operation. Performance parameters — brake thermal efficiency (BTE), exhaust gas temperature (EGT), volumetric efficiency and exhaust emissions of carbon monoxide (CO) and un-burnt hydrocarbon (UBHC) were determined with different values of brake mean effective pressure (BMEP) of the engine and compared with one over the other of two stroke and four stroke SI engine with different versions of the engine. Formaldehyde and acetaldehyde emissions were measured by 2, 4 dinitrophenyl hydrazine (2,4 DNPH) method at peak load operation of CE and CCE of two-stroke and four-stroke SI engine. The engine was provided with catalytic converter with sponge iron as catalyst. There was provision for injection of air into the catalytic converter. Brake thermal efficiency increased with methanol blended gasoline with both versions of the engine. CCE showed improvement in the performance when compared with CE with both test fuels. Four-stroke engine decreased exhaust emissions effectively in comparison with two-stroke engine with both versions of the engine. Catalytic converter with air injection significantly reduced exhaust emissions with different test fuels on both configurations of the engine.


Sign in / Sign up

Export Citation Format

Share Document