Waveform Analysis of a Transmission Line Pulse Generator by Use of Wavelet Transform

2014 ◽  
Vol 668-669 ◽  
pp. 1166-1169
Author(s):  
Zhen Guang Liang ◽  
Xue Gu

With good repeatability and simple structure, transmission line pulse (TLP) has been used in immunity test of integrated circuit and printed circuit board. A TLP generator is first manufactured and its output waveform is presented. By using wavelet transform, the waveform is denoised and discriminated to components inherent to system function and parasitic parameters. Frequency spectrum changed with time is also obtained by continuous wavelet transform of complex morlet. Decomposed damping oscillation component and high frequency component in instant frequency spectrum show influence of inductance in circuit on the waveform. Improvement of rising time and overshoot is achieved by change of probe connection with shorter grounding line.

Author(s):  
William Ng ◽  
Kevin Weaver ◽  
Zachary Gemmill ◽  
Herve Deslandes ◽  
Rudolf Schlangen

Abstract This paper demonstrates the use of a real time lock-in thermography (LIT) system to non-destructively characterize thermal events prior to the failing of an integrated circuit (IC) device. A case study using a packaged IC mounted on printed circuit board (PCB) is presented. The result validated the failing model by observing the thermal signature on the package. Subsequent analysis from the backside of the IC identified a hot spot in internal circuitry sensitive to varying value of external discrete component (inductor) on PCB.


Circuit World ◽  
2020 ◽  
Vol 46 (3) ◽  
pp. 215-219
Author(s):  
Akhendra Kumar Padavala ◽  
Narayana Kiran Akondi ◽  
Bheema Rao Nistala

Purpose This paper aims to present an efficient method to improve quality factor of printed fractal inductors based on electromagnetic band-gap (EBG) surface. Design/methodology/approach Hilbert fractal inductor is designed and simulated using high-frequency structural simulator. To improve the quality factor, an EBG surface underneath the inductor is incorporated without any degradation in inductance value. Findings The proposed inductor and Q factor are measured based on well-known three-dimensional simulator, and the results are compared experimentally. Practical implications The proposed method was able to significantly decrease the noise with increase in the speed of radio frequency and sensor-integrated circuit design. Originality/value Fractal inductor is designed and simulated with and without EBG surfaces. The measurement of printed circuit board prototypes demonstrates that the inclusion of split-ring array as EBG surface increases the quality factor by 90 per cent over standard fractal inductor of the same dimensions with a small degradation in inductance value and is capable of operating up to 2.4 GHz frequency range.


2019 ◽  
Vol 37 (01) ◽  
pp. 110-121 ◽  
Author(s):  
Falun Song ◽  
Fei Li ◽  
Beizhen Zhang ◽  
Mingdong Zhu ◽  
Chunxia Li ◽  
...  

AbstractThis paper introduces recent activities on Marx-based compact repetitive pulsed power generators at the Institute of Applied Electronics (IAE), China Academy of Engineering Physics (CAEP), over the period 2010–2018. A characteristic feature of the generators described is the use of a simplified bipolar charged Marx circuit, in which the normal isolation resistors or inductors to ground are removed to make the circuit simpler. Several pulse-forming modules developed to generate a 100 ns square wave output are introduced, including thin-film dielectric lines of different structures, a pulse-forming line based on a Printed Circuit Board, and non-uniform pulse-forming networks. A compact repetitive three-electrode spark gap switch with low-jitter, high-voltage, and high-current was developed and is used in the generators. A positive and negative series resonant constant current power supply with high precision and high power is introduced. As an important part of the repetitive pulse power generator, a lower jitter pulse trigger source is introduced. Several typical high-power repetitive pulsed power generators developed at IAE are introduced including a 30 GW low-impedance Marx generator, a compact square-wave pulse generator based on Kapton-film dielectric Blumlein line, a 20 GW high pulse-energy repetitive PFN-Marx generator, and a coaxial Marx generator based on ceramic capacitors. The research of key technologies and their development status are discussed, which can provide a reference for the future development and application of miniaturization of compact and repetitive Marx generators.


2020 ◽  
Vol 37 (4) ◽  
pp. 199-204
Author(s):  
Kamil Janeczek ◽  
Aneta Araźna ◽  
Wojciech Stęplewski ◽  
Marek Kościelski ◽  
Krzysztof Lipiec ◽  
...  

Purpose The purpose of this study is to design and fabricate a simple passive sensor circuitry embedded into a printed circuit board (PCB) and then to examine its properties. Design/methodology/approach A passive sensor transponder integrated circuit (IC) working in the high frequency (HF) 13.56 MHz frequency band was selected for this study. A loop antenna was designed to make the reported sensor circuitry readable. Next, the sensor circuitry was fabricated and embedded into a PCB with the proposed technologies. Finally, properties of the embedded structures were examined as well-functional parameters of the sensor circuitries. Findings The described investigation results confirmed that the proposed technologies using an epoxy resin or standard materials used for PCB’s production allowed to successfully produce sensors embedded into PCBs. This technology did not have a negative significant impact either on quality of solder joints of the assembled transponder IC or on functional properties of the embedded sensor. Apart from the identification data, the reported sensor can provide information about a selected property of its environment, e.g. temperature when its internal temperature sensitive element is used or other factors with the use of external sensitive elements, such as humidity. Research limitations/implications It is planned to carry on the reported investigations to examine other types of sensor circuitries capable of indicating e.g. humidity level and to evaluate influence of the proposed technology on their functional properties. Practical implications The reported sensor circuitries can be successfully used in electronic industry in internet of things systems not only to identify monitored electronic devices, but also to control selected parameters of external environment. This creates opportunity to detect device malfunction by detecting local temperature growth or to analyze its environment, which might allow to predict failure of controlled products using radio waves. This advantage seems to be extremely beneficial for applications, such as space, aviation or military, in which embedded sensor systems may lead to enhancing reliability of electronic devices by reacting on occurred failures in a more efficient way. Originality/value This study demonstrates valuable information for engineers conducting research on sensor components embedded into PCBs. The reported technologies are quite simple and cost-effective because of the use of standard materials known for PCB’s production or an epoxy resin which could be treated as an additional encapsulant material enhancing mechanical properties of the embedded sensor transponder IC.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaomin Zheng ◽  
Yuejun Zhang ◽  
Jiaweng Zhang ◽  
Wenqi Hu

We propose a new design, Physical Unclonable Function (PUF) scheme, for the Internet of Things (IoT), which has been suffering from multiple-level security threats. As more and more objects interconnect on IoT networks, the identity of each thing is very important. To authenticate each object, we design an impedance mismatch PUF, which exploits random physical factors of the transmission line to generate a security unique private key. The characteristic impedance of the transmission line and signal transmission theory of the printed circuit board (PCB) are also analyzed in detail. To improve the reliability, current feedback amplifier (CFA) method is applied on the PUF. Finally, the proposed scheme is implemented and tested. The measure results show that impedance mismatch PUF provides better unpredictability and randomness.


2013 ◽  
Vol 5 (6) ◽  
pp. 709-711
Author(s):  
Hyun-Seung Lee ◽  
Eun-Gyu Lee ◽  
Choul-Young Kim

A K-band microstrip delay line based on parasitic reduced left-handed transmission line (LHTL) with interdigital capacitors and shunt inductors is demonstrated with the aid of printed circuit board technology. The proposed delay line has ground slots under the interdigital capacitors to reduce the parasitic capacitance. The time delay of the proposed LHTLs is approximately 2.6 times larger than that of the conventional LHTLs. The input return loss of the proposed LHTL at 24 GHz is −16.9 dB and less than −10 dB from 20.5 to 26.1 GHz.


2021 ◽  
Vol 72 (2) ◽  
pp. 113-118
Author(s):  
Miroslav Potočný ◽  
Viera Stopjaková ◽  
Martin Kováč

Abstract This paper deals with the development and experimental verification of a low-power AC/DC converter. The proposed solution is aimed at the sub 0.5 W output power domain, commonly encountered in applications such as always-on wireless sensing nodes. To implement the proposed converter topology, a prototype application specific integrated circuit was designed and manufactured in a high voltage 0.35 µm CMOS technology, able to handle the maximum voltage of up to 120 V. The proposed design was first analyzed by transistor-level simulations showing high power efficiency and low no-load consumption of the developed converter. To facilitate experimental verification and measurement, an printed circuit board with the necessary external components was developed, as the available technology is unable to handle the AC line voltage directly. While the developed converter operated well with decreased input AC voltage, reliability issues arose during operation with the full AC line voltage of 230 Vrms. These are linked to digital control circuitry of the implemented chip and could be addressed in the second manufacturing run in the future.


2019 ◽  
Vol 16 (1) ◽  
pp. 13-20
Author(s):  
Ephraim Suhir ◽  
Sung Yi ◽  
Jennie S. Hwang ◽  
Reza Ghaffarian

Abstract The “head-in-pillow” (HnP) defects in lead-free solder joint interconnections of Integrated Circuit (IC) packages with conventional (small) standoff heights of the solder joints, and particularly in packages with fine pitches, are attributed by many electronic material scientists to the three major causes: attributes of the manufacturing process, solder material properties, and design-related issues. The latter are thought to be caused primarily by elevated stresses in the solder material, as well as by the excessive warpage of the Printed Circuit Board (PCB)-package assembly and particularly by the differences in the thermally induced curvatures of the PCB and the package. In this analysis, the stress and warpage issue is addressed using an analytical predictive stress model. The model is a modification and an extension of the model developed back in 1980s by the first author. It is assumed that it is the difference in the postfabrication deflections of the PCB-package assembly that is the root cause of the solder material failures and particularly and perhaps the HnP defects. The calculated data based on the developed stress model suggest that the replacement of the conventional ball grid array (BGA) designs with designs with elevated standoff heights of the solder joints could result in significant stress and warpage relief and, hopefully, in a lower propensity of the IC package to HnP defects as well. The general concepts are illustrated by a numerical example, in which the responses to the change in temperature of a conventional design, referred to as BGA, and a design with solder joints with elevated standoff heights, referred to as column grid array (CGA), are compared. The computed data indicated that the effective stress in the solder material was relieved by about 40% and the difference between the maximum deflections of the PCB and the package was reduced by about 60%, when the BGA design was replaced by a CGA system. Although no definite proof that the use of solder joints with elevated standoff heights will lessen the package propensity to the HnP defects is provided, the authors nonetheless think that there is a reason to believe that the application of solder joints with elevated standoff heights could result in a substantial improvement in the general IC package performance, including, perhaps, its propensity to HnP defects.


Sign in / Sign up

Export Citation Format

Share Document