Model Simulation of the Software Compatibility Testing Based on Android System

2014 ◽  
Vol 687-691 ◽  
pp. 2640-2643
Author(s):  
Xiang Gang Wang

in current, the software compatibility testing of Android system has been a difficulty, mainly because the software features of which has bigger difference cannot establish constrained detection analysis model. To solve this problem, a new compatibility analysis model of Android system is proposed. Android portfolio software is made compatibility testing modeling with a decomposition thought. The software features after decomposition are made repartition test modeling. The steady probability in different region combination is analyzed, and thus it represents the compatibility of Android system. Simulation results show that this kind of model can preferably complete the compatibility analysis work of Android system.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Manop Yingram ◽  
Suttichai Premrudeepreechacharn

The mainly used local islanding detection methods may be classified as active and passive methods. Passive methods do not perturb the system but they have larger nondetection zones, whereas active methods have smaller nondetection zones but they perturb the system. In this paper, a new hybrid method is proposed to solve this problem. An over/undervoltage (passive method) has been used to initiate an undervoltage shift (active method), which changes the undervoltage shift of inverter, when the passive method cannot have a clear discrimination between islanding and other events in the system. Simulation results on MATLAB/SIMULINK show that over/undervoltage and undervoltage shifts of hybrid islanding detection method are very effective because they can determine anti-islanding condition very fast.ΔP/P>38.41% could determine anti-islanding condition within 0.04 s;ΔP/P<-24.39% could determine anti-islanding condition within 0.04 s;-24.39%≤ΔP/P≤ 38.41% could determine anti-islanding condition within 0.08 s. This method perturbed the system, only in the case of-24.39% ≤ΔP/P ≤38.41% at which the control system of inverter injected a signal of undervoltage shift as necessary to check if the occurrence condition was an islanding condition or not.


2014 ◽  
Vol 614 ◽  
pp. 12-15
Author(s):  
Yu Fei Liu ◽  
Xiu Chao Bai ◽  
Xin Li ◽  
Yong Liang Lei

The heating in the running-in process of wet friction clutch is the key to research in this kind of products. In this paper, based on the shifting clutch composed of metal and paper-based friction liner, using MATLAB/SIMULINK software, the simulation model of friction clutch and the analysis model of conducting heat were established. Thus, the corresponding relationships were obtained, which were the total friction power and clutch temperature variation with the time during the running-in process. According to the simulation results, the main influencing factors on temperature control of wet friction clutch were analyzed during running-in process, and the results could provide reference for reasonable temperature rise control for the clutch.


2014 ◽  
Vol 953-954 ◽  
pp. 66-73
Author(s):  
Yan Ling Liu ◽  
Xue Zeng Shi ◽  
Yuan Yu

This paper presents the design of a solar/gas driving double effect LiBr-H2O absorption system. In order to use solar energy more efficiently, a new kind of solar/gas driving double effect LiBr-H2O absorption system is designed. In this system, the high-pressure generator is driven by conventional energy, natural gas, and solar energy together with water vapor generated in the high-pressure generator, which supplies energy to the low-pressure generator for a double effect absorption system. Simulation results illustrate that this kind of system is feasible and economical. Economic evaluation of several systems is also given in this paper in order to get a clear knowledge of the energy consumption of the system.


2016 ◽  
Vol 30 (02) ◽  
pp. 1550268 ◽  
Author(s):  
Jinwei Shi ◽  
Xingbai Luo ◽  
Jinming Li ◽  
Jianwei Jiang

To analyze the process of jet penetration in water medium quantitatively, the properties of jet penetration spaced target with water interlayer were studied through test and numerical simulation. Two theoretical models of jet penetration in water were proposed. The theoretical model 1 was established considering the impact of the shock wave, combined with the shock equation Rankine–Hugoniot and the virtual origin calculation method. The theoretical model 2 was obtained by fitting theoretical analysis and numerical simulation results. The effectiveness and universality of the two theoretical models were compared through the numerical simulation results. Both the models can reflect the relationship between the penetration velocity and the penetration distance in water well, and both the deviation and stability of theoretical model 1 are better than 2, the lower penetration velocity, and the larger deviation of the theoretical model 2. Therefore, the theoretical model 1 can reflect the properties of jet penetration in water effectively, and provide the reference of model simulation and theoretical research.


Processes ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 207
Author(s):  
Ephraim Agyingi ◽  
Luke Wakabayashi ◽  
Tamas Wiandt ◽  
Sophia Maggelakis

Among the vital processes of cutaneous wound healing are epithelialization and angiogenesis. The former leads to the successful closure of the wound while the latter ensures that nutrients are delivered to the wound region during and after healing is completed. These processes are regulated by various cytokines and growth factors that subtend their proliferation and migration into the wound region until full healing is attained. Wound epithelialization can be enhanced by the administration of epidermal stem cells (ESC) or impaired by the presence of an infection. This paper uses the Eden model of a growing cluster to independently simulate the processes of epithelialization and angiogenesis in a cutaneous wound for different geometries. Further, simulations illustrating bacterial infection are provided. Our simulation results demonstrate contraction and closure for any wound geometry due to a collective migration of epidermal cells from the wound edge in fractal form and the diffusion of capillary sprouts with the laying down of capillary blocks behind moving tips into the wound area.


2012 ◽  
Vol 588-589 ◽  
pp. 1507-1511
Author(s):  
Xiao Juan Sun

This paper presents a nonlinear excitation controller for transient stability combined differential geometry theory with PID technology. The controller ties the output of linear multi-variable excitation controller with the output of PID. Exact feedback linearization theory of differential geometry is applied to the design of linear multi-variable excitation controller for the single machine infinite system. Simulation results show that, compared with the general differential geometric controller, the proposed controller has the better control effect on power system and which remarkably improves the terminal voltage deficiencies in the control of generator.


2014 ◽  
Vol 611 ◽  
pp. 325-331
Author(s):  
Ľubica Miková ◽  
Michal Kelemen ◽  
Vladislav Maxim ◽  
Jaromír Jezný

In current practice the use of mathematical models is substantially widespread, reason being the recent increase in development of programs for this purpose, with the option of model simulation in a virtual environment, proportional to the evolving computer technology. The article contains a mathematical model created using Matlab program. The simulation results are compared with scientific literature that addresses DC motors and evaluated. For simplicity, a graphical interface was created.


2020 ◽  
Vol 198 ◽  
pp. 02006
Author(s):  
Nana Li ◽  
Yongqiang Zhou ◽  
Yanqiang Zhao ◽  
Guiju Li

In order to study the interaction between the left and right tunnels of suspension bridge tunnel-type anchorage, the finite difference numerical software is used to analyze the mechanical properties of the surrounding rock during the construction process. A numerical analysis model based on FLAC3D is established to analyze the stress, displacement and plastic zone changes of the surrounding rock of right tunnel anchor cavern during the construction of left tunnel anchor cavern. The right tunnel anchor cavern is excavated firstly, and then the left tunnel anchor cavern is excavated. The numerical simulation results show that the main displacement of the right tunnel occurs in the construction stage of the anchor plug body and the rear anchor cavern of the left tunnel. During the excavation of the left tunnel, the plastic zones of the left and right tunnel anchor caverns are only connected above the middle of the waist wall. Therefore, it is suggested that during the construction process, especially in the excavation stage of the anchor plug body and the rear anchor cavern, the area above the middle of the tunnel waist wall should be strengthened in time to ensure the construction safety.


2014 ◽  
Vol 687-691 ◽  
pp. 4072-4075
Author(s):  
Tian Wang

For the particle filter, the paper proposes an approximate algorithm for the case of unknown measurement noise and make a comparison between EKF algorithm and the approximate particle filter for estimating trajectory in a bistatic radar system. Simulation results show that the advantage of the particle filter and theavailability of the approximate particle filter.


Sign in / Sign up

Export Citation Format

Share Document