Experimental Study on Effect of CO2 Heat Pump Evaporator on Frosting Condition

2014 ◽  
Vol 694 ◽  
pp. 218-221
Author(s):  
Si Qian Zhu ◽  
Jing Lv ◽  
Hui Xia Lu ◽  
Dong Dong Shi ◽  
Feng Xu

The theoretical analysis of frost formation had been made. The wind speed, temperature and relative humidity etc. had different effects respectively. A single heating was studied through the experiment. In different outdoor conditions, experimental data showed evaporator frost at the environment temperature of 10 °C, environment relative humidity was 70%. Comparing the experimental data, it is concluded that temperature of evaporator’s outlet is increasing with the outlet temperature. The refrigerant evaporation temperature and COP under different conditions has been tested. The relation of evaporation pressure and environmental temperature under different evaporation temperature had been concluded. According to the experiment, a defrost measure of this experiment equipment had been proposed.

2012 ◽  
Vol 516-517 ◽  
pp. 1180-1183
Author(s):  
Hui Fan Zheng ◽  
Chun Li Yang ◽  
Yan Hua Li ◽  
Yao Hua Liang

An experimental setup is designed and built to study the operation characteristics of the air-cooled heat pump system for small residential in this paper. Based on the experimental setup, the characteristics of the energy efficiency ratio(EER) and cooling capacity have been researched when the outlet temperature of cooling water and outdoor environment temperature change. The experimental data demonstrate that the cooling capacity and EER of the system increases with increasing outlet cooling water temperatures and decreases with increasing outdoor environment temperatures. In addition, the correlation of the system EER is calculated by using the least square method based on the experimental data.


2009 ◽  
Vol 52 (5) ◽  
pp. 459-465
Author(s):  
B. Bülbül ◽  
M. B. Ataman

Abstract. In this study, the effect of climatic conditions on oestrus occurrence was investigated by using 9 972 oestrus records of cows recorded between 1995 and 2003. A distinct seasonal variation in the oestrus occurrence was determined. Oestrus occurrence observed in January, March, November and December was less than that in June and September (P<0.05). Annual distribution of the oestrus occurrence was positively correlated with environment temperature and insulation duration, but it was negatively correlated with rainfall (P<0.01). However, there was no relationship between oestrus occurrence and relative humidity. In addition to these, there was a slight decrease in the oestrus response when the temperature-humidity index (THI) was above 72; nevertheless, this decrease was not significant (P >0.05). The data presented in this study demonstrated that the increase in the environmental temperature up to 23 °C did not cause a suppressive effect on the ovarian activity. In conclusion, annual distribution of the oestrus occurrence is positively correlated with environment temperature and insulation duration whereas it is negatively correlated with rainfall in Holstein cows, in this study.


2011 ◽  
Vol 66-68 ◽  
pp. 307-310
Author(s):  
Xu Li ◽  
Kai Liu

Experimental investigation results of the fuel nozzle group in a heavy-duty gas turbine are presented. Atomization characteristic has great impact about combustion efficiency, ignition performance, and outlet temperature field of combustor. Obtained atomization characteristic about spray particle size and distribution using LDV/PDPA system. These experimental data have provided reliable basis for the nozzle group design, development and operation.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012209
Author(s):  
C Legros ◽  
A Piot ◽  
M Woloszyn ◽  
M Pailha

Abstract The use of hygroscopic materials indoors has a significant impact on the hygrothermal balance of a room air. It affects both the temperature and the relative humidity. Numerical tools still lack of accuracy in predicting these parameters and some discrepancies are observed between their predictions and experimental measurements. It may be caused by the model itself or by incorrect inputs data (materials properties, occupancy schedule, ventilation rate, etc…) Therefore, an experimental study has been carried out at the room scale under real climate to obtain an experimental dataset as a basis for numerical comparisons. The hygrothermal parameters of the room air have been measured for different loads while all the inputs (heat and moisture generation, air exchange and materials properties) have been properly quantified. This article presents the experimental setup and some of the experimental data obtained.


1970 ◽  
Vol 37 (4) ◽  
pp. 1172-1176 ◽  
Author(s):  
M. E. McCormick ◽  
T. C. Ripley

Results of an experimental study of the turbulence-induced random vibrations of a thin metal ribbon show that an interaction between the vibrating surface and the turbulence exists which results in an increase in the turbulent energy within the boundary layer. In addition, the system damping is shown to vary with the free-stream velocity and to be proportional to the amplitude response of the ribbon. The experimental data and an accompanying theoretical analysis give support to the belief that the damping is primarily a velocity-squared type which is characteristic of a flat plate vibrating normally in a fluid.


MAUSAM ◽  
2021 ◽  
Vol 57 (2) ◽  
pp. 231-240
Author(s):  
GAJENDRA KUMAR ◽  
M. MOHAPATRA

Lkkj & xqokgkVh gokbZ vM~Ms ij vk, paMokr ls tqM+s okf"kZd vkSj ekfld ckjEckjrk dk forj.k] xtZ ds lkFk vk, rwQkuksa  vkSj paMokrksa ds vkjEHk gksus dk le; vkSj mudh vof/k rFkk i;kZoj.kh; ifjorZuksa dk fo’ys"k.k fd;k x;k gSA rwQku vkSj paMokr lcls T;knk ebZ ds eghusa esa vkrs gSa vkSj mlds ckn viSzy ds eghus esa vkrs gSaA rwQkuksa vkSj paMokrksa dh vko`fr;k¡ lcls T;knk ebZ ds eghusa esa gksrh gSa vkSj mlds ckn vizSy ds eghus esa gksrh gSaA vf/kdk¡’k rwQku ekulwu _rq ls iwoZ vkSj ekulwu _rq ds nkSjku vkrs gSa rFkk paMokr Qjojh ls ebZ ds eghuksa ds nkSjku vkrs gSaA ekulwu _rq ls iwoZ vkus okys vf/kdk¡’k rwQku e/; jkf= ls ysdj rM+ds lqcg ds le; esa vkrs gSa tcfd ekulwu _rq ds nkSjku vkus okys rwQku 0600&1200 ;w- Vh- lh- ds chp vk;k djrs gSa  vf/kdk¡’k rwQkuksa dh vof/k rhu ?kaVksa ls Hkh de dh gksrh gSA vf/kdk¡’k paMokrksa dh vof/k pkj feuVksa ls Hkh de dh gksrh gS] fn’kk mÙkj if’pe vkSj ;s 0900&2100 ;w- Vh- lh- ds le; vkrs gSaA xqokgkVh gokbZ vM~Ms ij paMokr ds vkus ls i;kZoj.kh; rkieku vkSlru 2-2° lsa- rd fxj tkrk gS] lkisf{kd vknzZrk 8-5 izfr’kr rd c<+ tkrh gS vkSj nkc 1-6 gSDVkikLdy rd c<+ tkrk gSA xqokgkVh gokbZ vM~Ms ij paMokr ds vkus ls vf/kdre iou xfr vkSlru yxHkx 39 ukWV~l gksrh gSA fiNys v/;;uksa ls rqyuk djus ij ;g irk pyrk gS fd fiNys dqN o"kksZa esa rQkuksa vkSj paMokrksa ds y{k.kksa esa fo’ks"k ifjorZu ugha vk;k gSA  The annual and monthly frequency distribution, time of commencement and duration of thunderstorms & squalls and environmental changes associated with occurrence of squall at Guwahati Airport have been analyzed. The frequencies of thunderstorms and squalls are maximum in the month of May followed by April. Most of the thunderstorms occur during premonsoon and monsoon season and squalls occur during Feb-May. Most of the premonsoon thunderstorms commence during midnight to early morning while the thunderstorms during monsoon season have preference to commence between 0600-1200 UTC. Majority of thunderstorms is of the duration of less than three hours. Majority of squalls have the duration of less than four minutes, direction as northwesterly and occur during 0900-2100 UTC. On the average, environmental temperature falls by 2.2° C, the relative humidity rises by 8.5%, and the pressure increases by 1.6 hPa due to squall over Guwahati Airport. The average maximum wind speed associated with a squall over Guwahati Airport is about 39 knots. Comparison with the past studies indicates that characteristics of thunderstorms and squalls have not changed significantly over the years.


2020 ◽  
pp. 167-167
Author(s):  
Shuailing Liu ◽  
Guoyuan Ma ◽  
Shuxue Xu ◽  
Fuping Li ◽  
Chenzhe Hang

The improvement performance of refrigerating dehumidification system was theoretically discusses based on a dehumidification model. The influence of evaporator inlet wind speed, dry bulb temperature and relative humidity on dehumidification were analysed by the model. The results show that, when inlet air temperature and humidity were kept constant, the dehumidification capacity increased first and then decreased with increase of the wind speed; When the moisture content and the wind speed of the inlet air were kept constant, the dehumidification capacity gradually decreased with increase of the inlet air dry bulb temperature; The inlet air dry bulb temperature was between 21-36 ?C and the relative humidity was between 40% and 85%, the difference between the inlet air wet bulb temperature and the evaporation temperature at the optimum COP was about 10 ?C; There was a nearly linear relationship between the corresponding evaporation temperature at the optimal COP and the evaporation temperature with the maximum dehumidification capacity, compared with the test value, the error was less than 10%.


Author(s):  
A. Gómez ◽  
P. Schabes-Retchkiman ◽  
M. José-Yacamán ◽  
T. Ocaña

The splitting effect that is observed in microdiffraction pat-terns of small metallic particles in the size range 50-500 Å can be understood using the dynamical theory of electron diffraction for the case of a crystal containing a finite wedge. For the experimental data we refer to part I of this work in these proceedings.


Author(s):  
Ivelin Kostov

In the work brought some experimental data of kinematic parameters of movement of cars forced idle, as the software product was used to diagnose 900 ATS, which recorded kinematic parameters of vehicle. On the basis of the conducted experimental research results are shown tabulated and analysed.


2020 ◽  
Vol 1675 ◽  
pp. 012058
Author(s):  
A N Sterlyagov ◽  
M I Nizovtsev ◽  
V Yu Borodulin ◽  
V N Letushko

Sign in / Sign up

Export Citation Format

Share Document