The Use of Lattice Boltzmann Numerical Method for Prediction of Nanofluid Flow in a Square Enclosure

2014 ◽  
Vol 695 ◽  
pp. 367-370
Author(s):  
Nor Azwadi Che Sidik ◽  
Reza Masoomzadeh

In this paper, we contribute to another record of computational results by lattice Boltzmann on the flow behavior of nanofluid in a differentially heated enclosure. In the present study, numerical prediction of CuO and Al2O3 nanofluid, Rayleigh number ranges 103 - 105, aspect ratios of 0.5, 1.0 and 2.0 and nanoparticle volume fractions of 1, 3, 5 and 10% were performed. The results show that, for both nanofluids, increases the volume fraction lead to increase of the average Nusselt number for the whole range of aspect ratios and Rayleigh numbers.

2015 ◽  
Vol 19 (1) ◽  
pp. 155-166 ◽  
Author(s):  
Hasan Sajjadi ◽  
Reza Kefayati

In this paper Lattice Boltzmann simulation of turbulent natural convection with large-eddy simulations (LES) in tall enclosures which is filled by air with Pr=0.71 has been studied. Calculations were performed for high Rayleigh numbers (Ra=107-109) and aspect ratios change between 0.5 to 2 (0.5<AR<2). The present results are validated by finds of an experimental research at Ra=1.58x109. Effects of the aspect ratios in different Rayleigh numbers are displayed on streamlines, isotherm counters, vertical velocity and temperature at the middle of the cavity, local Nusselt number and average Nusselt number. The average Nusselt number increases with the augmentation of Rayleigh numbers. The increment of the aspect ratio causes heat transfer to decline in different Rayleigh numbers.


Author(s):  
M Ghazvini ◽  
M A Akhavan-Behabadi ◽  
M Esmaeili

The present article focuses on analytical and numerical study on the effect of viscous dissipation when nanofluid is used as the coolant in a microchannel heat sink (MCHS). The nanofluid is made from CuO nanoparticles and water. To analyse the MCHS, a modified Darcy equation for the fluid and two-equation model for heat transfer between fluid and solid sections are employed in porous media approach. In addition, to deal with nanofluid heat transfer, a model based on the Brownian motion of nanoparticles is used. The model evaluates the thermal conductivity of nanofluid considering the thermal boundary resistance, nanoparticle diameter, volume fraction, and the fluid temperature. At first, the effects of particle volume fraction on temperature distribution and overall heat transfer coefficient are investigated with and without considering viscous dissipation. After that, the influence of different channel aspect ratios and porosities is studied. The results show that for nanofluid flow in microchannels, the viscous dissipation can be neglected for low volume fractions and aspect ratios only. Finally, the effect of porosity and Brinkman number on the overall Nusselt number is studied, where asymptotic behaviour of the Nusselt number is observed and discussed from the energy balance point of view.


2014 ◽  
Vol 18 (suppl.2) ◽  
pp. 283-300 ◽  
Author(s):  
Mostafa Mahmoodi ◽  
Arani Abbasian ◽  
Sebdani Mazrouei ◽  
Saeed Nazari ◽  
Mohammad Akbari

The problem of free convection fluid flow and heat transfer in a square cavity with a flush mounted heat source on its bottom wall and two heat sinks on its vertical side walls has been investigated numerically. Via changing the location of the heat sinks, six different arrangements have been generated. The cavity was filled with Cu-water nanofluid. The governing equations were discretized using the finite volume method and SIMPLER algorithm. Using the developed code, a parametric study was undertaken, and effects of Rayleigh number, arrangements of the heat sinks and volume fraction of the nanoparticles on fluid flow and heat transfer inside the cavity were investigated. Also for the middle-middle heat sinks arrangement, capability of five different water based nanofluids on enhancement of the rate of heat transfer was examined and compared. From the obtained results it was found that the average Nusselt number, for all six different arrangements of the heat sinks, was an increasing function of the Rayleigh number and the volume fraction of the nanoparticles. Also it was found that at high Rayleigh numbers, maximum and minimum average Nusselt number occurred for middle-middle and top-bottom arrangement, respectively. Moreover it was found that for the middle-middle arrangement, at high Rayleigh numbers, maximum and minimum rate of heat transfer was obtained by Cu-water and TiO2-water nanofluids respectively.


2019 ◽  
Vol 88 (1) ◽  
pp. 11101 ◽  
Author(s):  
Mahdi Benzema ◽  
Youb Khaled Benkahla ◽  
Ahlem Boudiaf ◽  
Sief-Eddine Ouyahia ◽  
Mohammed El Ganaoui

Numerical study for the effect of an external magnetic field on the mixed convection of Al2O3–water Newtonian nanofluid in a right-angle vented trapezoidal cavity was performed using the finite volume method. The non-homogeneous Buongiorno model is applied for numerical description of the dynamic phenomena inside the cavity. The nanofluid, with low temperature and high concentration, enters the cavity through the upper open border, and is evacuated through opening placed at the right end of the bottom wall. The cavity is heated from the inclined wall, while the remainder walls are adiabatic and impermeable to both the base fluid and nanoparticles. After validation of the model, the analysis was carried out for a wide range of Hartmann number (0 ≼ Ha ≼ 100) and nanoparticles volume fraction (0 ≼ ϕ0 ≼ 0.06). The flow behavior as well as the temperature and nanoparticles distribution shows a particular sensitivity to the variations of both the Hartmann number and the nanofluid concentration. The domination of conduction mechanism at high Hartmann numbers reflects the significant effect of Brownian diffusion which tends to uniform the distribution of nanoparticles in the domain. The average Nusselt number which increases with the nanoparticles addition, depends strongly on the Hartmann number. Finally, a correlation predicting the average Nusselt number within such geometry as a function of the considered parameters is proposed.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3068 ◽  
Author(s):  
Ali Chamkha ◽  
Fatih Selimefendigil

In this study, numerical analysis of forced convective pulsating nanofluid flow over a backward-facing step with different nanoparticle shapes was performed by the finite volume method. The effects of the Strouhal number (between 0.1 and 2), solid nanoparticle volume fraction (between 0 and 0.04) and nanoparticle shapes (spherical, blade and cylindrical) on the heat transfer and fluid flow were examined with the aid of numerical simulation. It was observed that the average Nusselt number is a decreasing function of the Strouhal number for the considered range, and it enhances for higher solid particle fractions. Using nanofluids with spherical particles is advantageous in pulsating flow, whereas cylindrically-shaped particles are preferred in steady flow configurations. Average Nusselt number enhancements up to 30.24% and 27.95% are achieved with cylindrical- and spherical-shaped particles at the highest volume fraction.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Chithra Devaraj ◽  
Eswaramurthi Muthuswamy ◽  
Sundararaj Kandasamy

Natural convection heat transfer in a two-dimensional square enclosure at various angles of inclination is investigated numerically using a finite volume based computational procedure. The heat transfer is from a constant temperature heat source of finite length centred at one of the walls to the cold wall on the opposite side while the remaining walls are insulated. The effect of area ratio of the heat sourceAfrom 0.2 to 1.0, Rayleigh number Ra from 103to 107, and angle of inclination of the enclosureθvarying from 0° to 360° on the flow field and heat transfer characteristics are investigated. Streamline and isothermal line patterns are found to be similar at low Rayleigh numbers whereas at high Rayleigh numbers the differences are significant due to the influence of the parameters considered. Average Nusselt number decreases drastically as the position of the heat source is moved above the horizontal centre line of the enclosure. Correlation of the average Nusselt number which depends on the parameters of interest is obtained in the general formCRamAn. The correlation coefficients are determined by multiple regression analysis for the entire range of Rayleigh numbers analysed and the values found by correlation equations are in good agreement with the numerical results.


Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 363 ◽  
Author(s):  
Shuyan Deng

The hydrodynamic and thermal behavior of the electroosmotic flow of power-law nanofluid is studied. A modified Cauchy momentum equation governing the hydrodynamic behavior of power-law nanofluid flow in a rectangular microchannel is firstly developed. To explore the thermal behavior of power-law nanofluid flow, the energy equation is developed, which is coupled to the velocity field. A numerical algorithm based on the Crank–Nicolson method and compact difference schemes is proposed, whereby the velocity, temperature, and Nusselt number are computed for different parameters. A larger nanoparticle volume fraction significantly reduces the velocity and enhances the temperature regardless of the base fluid rheology. The Nusselt number increases with the flow behavior index and with electrokinetic width when considering the surface heating effect, which decreases with the Joule heating parameter. The heat transfer rate of electroosmotic flow is enhanced for shear thickening nanofluids or at a greater nanoparticle volume fraction.


Processes ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 7
Author(s):  
Hanifa Hanif ◽  
Ilyas Khan ◽  
Sharidan Shafie ◽  
Waqar A. Khan

The present research provides a numerical investigation of two dimensional nanofluid flow over an inverted cone inside a porous medium. The model is developed to incorporate non-spherical shapes of C d T e -nanoparticles in water based fluid. Simultaneous effects of pertinent parameters like volume fraction, Reynold number, Hartmann number, porosity, Grashof number, radiation parameter and Peclet number on temperature distribution and velocity profile are studied and illustrated graphically. In addition, the corresponding computational results of Nusselt number and skin frication for regulating parameters are also presented in graphs and tables. The highest Nusselt number is observed for blade-shaped C d T e particles. Furthermore, the thermal conductivity and viscosity are also calculated for non-spherical shapes of C d T e nanoparticles. The result showed that the thermal conductivity of nanofluid with blade-shaped particles is 0.94 % and 1.93 % greater than platelet and brick type particles. The computational results for the special case are validated by comparisons with the presented results in previous studies and the results are in perfect agreement.


2018 ◽  
Vol 22 ◽  
pp. 01042
Author(s):  
Amr G. Eltorky ◽  
Mohamed Elhelw ◽  
Mohamed Fayed ◽  
Abdelhamid Attia

Heat transfer through the horizontal eccentric annulus between eccentric rectangular ducts with different eccentricities has been calculated with various aspect ratio of inner duct. Boundary conditions are used with constant hot temperature on inner duct and constant cold temperature on the outer duct. Space between two ducts included TiO2-water Nano-fluid with different solid Volume fraction (φ = 0, 2, 5, 10 %). The eccentricity was changed with different values (E = 0.025, 0.05, 0.075 m) in left direction and aspect ratio was changed with different value (AR= 0.25, 0.375, 0.5). Results show that with an increase of aspect ratios, the average Nusselt number increases. Alsowith an increase in eccentricity value,the average Nusselt numberremains constant, and then an increase begins to occur. And the average Nusselt number increase due to an increase in nanoparticle concentration.


Sign in / Sign up

Export Citation Format

Share Document