The Design of a Multi-Functional Force Loading Device

2014 ◽  
Vol 709 ◽  
pp. 496-499
Author(s):  
Yu Qin Li ◽  
Ying Jun Li ◽  
Huan Yong Cui ◽  
Gui Cong Wang ◽  
Xi Jie Tian

As a mechanical component, sensor can detect spatial information. Sensor technology has been widely used in national defense, aerospace, industrial inspection and automated production areas and so on. However, the sensor calibration device cannot meet the demand of the development of the sensor. In this paper, a multi-functional force loading device, which is of good technical performance, reliable operation, wide measurement range and simple measurement method, and a six-dimensional force sensor calibration method are described.

2022 ◽  
Vol 169 ◽  
pp. 104685
Author(s):  
Kai-xian Ba ◽  
Yan-he Song ◽  
Ya-peng Shi ◽  
Chun-yu Wang ◽  
Guo-liang Ma ◽  
...  

2014 ◽  
Vol 599-601 ◽  
pp. 1135-1138
Author(s):  
Chao Zhe Ma ◽  
Jin Song Du ◽  
Yi Yang Liu

At present, sub-micro-Newton (sub-μN) micro-force in micro-assembly and micro-manipulation is not able to be measured reliably. The piezoelectric micro-force sensors offer a lot of advantages for MEMS applications such as low power dissipation, high sensitivity, and easily integrated with piezoelectric micro-actuators. In spite of many advantages above, the research efforts are relatively limited compared to piezoresistive micro-force sensors. In this paper, Sensitive component is polyvinylidene fluoride (PVDF) and the research object is micro-force sensor based on PVDF film. Moreover, the model of micro-force and sensor’s output voltage is built up, signal processing circuit is designed, and a novel calibration method of micro-force sensor is designed to reliably measure force in the range of sub-μN. The experimental results show the PVDF sensor is designed in this paper with sub-μN resolution.


Sensor Review ◽  
2018 ◽  
Vol 38 (4) ◽  
pp. 405-411
Author(s):  
Zhanshe Guo ◽  
Zhaojun Guo ◽  
Xiangdang Liang ◽  
Shen Liu

Purpose Biomechanical properties of bones and fixators are important. The aim of this study was to develop a new device to simulate the real mechanical environment and to evaluate biomechanical properties of the bone with a fixation device, including the static force and the fatigue characters. Design/methodology/approach In this paper, the device is mainly composed of three parts: pull-pressure transmission system, bending force applying system and torsion applying system, which can successfully simulate the pre-introduced pull-pressure force, bending force and torsion force, respectively. To prove the feasibility of the design, theoretical analysis is used. It is concluded from the simulated result that this scheme of design can successfully satisfy the request of the evaluation. Findings Finally, on the basis of the force sensor calibration, the static force experiment and fatigue experiment are carried out using the tibia of the sheep as the specimen. It is concluded from the result that the relationship between the micro displacement and the applied axial force is nearly linear. Under the condition of 1 Hz in frequency, 500 N in loading force and 18,000 reciprocating cycles, the bone fixator can still be in good condition, which proves the feasibility of the design. Originality/value Biomechanical properties of bones and fixators are studied by researchers. However, few simulate a real force environment and combine forces in different directions. So a novel system is designed and fabricated to evaluate the biomechanical properties of the bones and fixators. Results of the experiments show that this new system is reliable and stable, which can support the biomechanical study and clinical treatment.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3485 ◽  
Author(s):  
Dongdong Chen ◽  
Peijiang Yuan ◽  
Tianmiao Wang ◽  
Ying Cai ◽  
Haiyang Tang

To enhance the perpendicularity accuracy in the robotic drilling system, a normal sensor calibration method is proposed to identify the errors of the zero point and laser beam direction of laser displacement sensors simultaneously. The procedure of normal adjustment of the robotic drilling system is introduced firstly. Next the measurement model of the zero point and laser beam direction on a datum plane is constructed based on the principle of the distance measurement for laser displacement sensors. An extended Kalman filter algorithm is used to identify the sensor errors. Then the surface normal measurement and attitude adjustments are presented to ensure that the axis of the drill bit coincides with the normal at drilling point. Finally, simulations are conducted to study the performance of the proposed calibration method and experiments are carried out on a robotic drilling system. The simulation and experimental results show that the perpendicularity of the hole is within 0.2°. They also demonstrate that the proposed calibration method has high accuracy of parameter identification and lays a basis for high-precision perpendicularity accuracy of drilling in the robotic drilling system.


Author(s):  
Jiachou Wang ◽  
Weibin Rong ◽  
Lining Sun ◽  
Hui Xie ◽  
Wei Chen

A novel micro gripper integrating tri-axial force sensor and two grades displacement amplifier is presented in this paper, which bases on the technology of Piezoresistive detection and use PZT as its micro driving component. The micro tri-axial force sensor is fabricated on a single-crystalline-silicon by the technology of MEMS and consists of a flexible cross-structure realized by deep reactive ion etching (DRIE). The arms of the cross-structure are connected to a silicon frame and to the central part of the cross-structure. After modeling the amplifier structure of micro gripper and the sensor, finite element method (FEM) is used to analyze the displacement of the micro gripper and the deformation of the cross-structure elastic cantilever. A calibration method of tri-axial sensor based on the technology of microscopic vision and the principle of bending deflection cantilever is proposed. The experimental verified that the sensor are high level of intrinsic decoupling of the signals from strain gauge, high resolutions in all three axes, high linearity and repeatability and simple produce of calculation. And also show the micro gripper is reasonable and practical. The sensor is capable of resolving forces up to 10mN with resolution of 2.4μN in x axis and y axis and up to 10mN with resolution of 4.2μN in z axis; the gripping displacement of the micro gripper is from 20μm to 300μm.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1923
Author(s):  
Shuang Zhao ◽  
Jun Liu ◽  
Yansong Li

At present, most sensor calibration methods are off-line calibration, which not only makes them time-consuming and laborious, but also causes considerable economic losses. Therefore, in this study, an online calibration method of current sensors is proposed to address the abovementioned issues. The principle and framework of online calibration are introduced. One of the calibration indexes is angular difference. In order to accurately verify it, data acquisition must be precisely synchronized. Therefore, a precise synchronous acquisition system based on GPS timing is proposed. The influence of ionosphere on the accuracy of GPS signal is analyzed and a new method for measuring the inherent delay of GPS receiver is proposed. The synchronous acquisition performance of the system is verified by inter-channel synchronization experiment, and the results show that the synchronization of the system is accurate. Lastly, we apply our online calibration method to the current sensor; the experimental results show that the angular difference and ratio difference meet the requirements of the national standard and the accuracy of the online calibration system can be achieved to 0.2 class, demonstrating the effectiveness of the proposed online calibration method.


2006 ◽  
Vol 505-507 ◽  
pp. 343-348
Author(s):  
C.T. Pan ◽  
P.J. Cheng ◽  
Yeong-Maw Hwang ◽  
M.F. Chen ◽  
H.S. Chuang ◽  
...  

A self-built micro-particle image velocimetry (micro-PIV) with a diode laser is established to measure the micro-fluidic phenomenon in a 100 μm rectangular capillary. By scanning method, a 3-D flow image with a flowrate of 0.3 μL/min is presented. With this calibration method, the measurement ability for 3-D micro-fluidic dynamics could be achieved. This technique also reveals its benefit and potential in metrology. Hence, it provides a helpful tool for Bio-MEMS research. The experiment is proceeded under laminar flow, Re= 0.011. The measurement range is ranging from 0.05μm/s to 4.3mm/s. The vector grid resolution is optimized to 2.5 μm.


2014 ◽  
Vol 644-650 ◽  
pp. 1234-1239
Author(s):  
Tao He ◽  
Yu Lang Xie ◽  
Cai Sheng Zhu ◽  
Jiu Yin Chen

This template explains and demonstrates how to design a measurement system based on the size of the linear structured light vision, the system could works at realized the high precision and fast measurement of the size of mechanical parts, and accurate calibration of the system. First of all, this paper set up the experimental platform based on linear structured light vision measurement. Secondly, this paper established a system of measurement model, and puts forward a new method of calibration of structured light sensor and set up the mathematical model of sensor calibration. This calibration method only need to use some gage blocks of high precision as the target, the target position need not have a strict requirements, and the solving process will be more convenient, much easier to field use and maintenance. Finally, measuring accuracy on the system by gage blocks with high precision is verified, the experiment shows that measurement accuracy within 0.050 mmin the depth of 0-80 - mm range. This system can satisfy the demands of precision testing of most industrial parts .with its simple calibration process and high precision, it is suitable for the structured light vision calibration.


Sign in / Sign up

Export Citation Format

Share Document