Influence of Air Entraining Agent on Performance of Inorganic Thermal Insulating Mortar

2011 ◽  
Vol 71-78 ◽  
pp. 490-493 ◽  
Author(s):  
Zhi Min He ◽  
Jun Zhe Liu ◽  
Tian Hong Wang

This paper presents a laboratory study on the effect of air entraining agent on the performance of thermal insulating mortar with glazed hollow bead. The test results show that with the dosage of air entraining agent increases, the consistency of thermal insulating mortar increases, apparent density, thermal conductivity and drying shrinkage decline, However, the compressive strength greater losses owing to excessive consumption of air entraining agent; air entraining agent within a certain dosage can significantly improve the operating performance of thermal insulation mortar, increase its consistency and reduce its apparent density, thermal conductivity coefficient and drying shrinkage. Due to excessive addition of air entraining agent, the apparent density, thermal conductivity and compressive strength of thermal insulation mortar all increase. For a specific insulation mortar, there will exist the best mixing amount of air entraining agent.

2020 ◽  
Vol 3 (3) ◽  
pp. 21-27 ◽  
Author(s):  
T. Drozdyuk ◽  
Arkadiy Ayzenshtadt ◽  
M. Frolova ◽  
Rama Shanker Rama Shanker Verma

the paper shows the possibility of producing a thermal insulating composite based on basalt fibers and sapo-nite-containing mining waste. A method for manufacturing thermal insulating composites from hydro-mass with different contents of the mixture components is proposed. Basalt fibers were used as a filler, and pre-mechanoactivated saponite-containing material (SCM) was used as a binder. It was found experimentally that depending on the composition of composites, the coefficient of thermal conductivity varies from 0.1109 to 0.1342 W/(m•K), and the compressive strength – from 0.45 to 0.93 MPa. In addition, it was found that thermal modification of composites at temperatures up to 1200°C significantly (up to 3 times) increases the compressive strength of composites, while not affecting the coefficient of thermal conductivity. The ex-periments to determine the conductivity of the composite “basalt fiber – SСM” depending on its moisture content showed that the obtained composite is characterized by intense and linear increase in the values of conductivity when the humidity of the sample to 12% and further increase in humidity practically does not change the values of the coefficient of thermal conductivity. Comparison of the studied thermal insulation composite with known structural thermal insulation materials in terms of its thermal insulation and strength characteristics showed that it is comparable to gas and foam blocks. It should also be noted that this material is environmentally safe and can withstand high temperatures without collapsing.


2010 ◽  
Vol 178 ◽  
pp. 220-225 ◽  
Author(s):  
Yong Guang Xi ◽  
Tong Jiang Peng ◽  
Hai Feng Liu ◽  
Ji Ming Chen

In this paper, thermal insulation boards comprising expanded vermiculite and gypsum were manufactured by casting and compression molding methods respectively. The effects of flake size and preparation methods of expanded vermiculite (EV), ratio of calcined gypsum/EV and molding methods on thermal and mechanical properties were discussed. The results indicated that the thermal conductivity (λ) and compressive strength of the boards decreased with the increase of flake size, and increased as the ratio of calcined gypsum/EV rose, and the density of the boards increased linearly with the increasing ratio. Compared to compression molding, casting technique can make insulating materials with higher thermal conductivity, compressive strength, and lower water content. The boards containing EV expanded by microwave chemical method presented a better thermal insulating property (λ=0.091W•m-1•K-1) relative to the ones filled with microwave exfoliated EV (λ=0.107W•m-1•K-1). The prepared materials can be used for heat, acoustical insulation and moisture adjustment.


2012 ◽  
Vol 193-194 ◽  
pp. 533-538 ◽  
Author(s):  
Cong Bo Li ◽  
Su Hong Yin ◽  
Zi Yun Wen ◽  
Xiao Hua Zhou

An optimal air-entraining agent was selected through a systematically experimental and theoretical study on air-entraining and full-light-aggregate concrete (AEFLC) for structural and thermal insulating wall. Among the three air-entraining agents: rosin acid sodium, Polycarboxylate-type agent, Lauric acid-based agent, Lauric acid-based (Huntsman) air entraining agent was considered the best for the air-entraining quantity and quality. As the result, a AEFLC with the apparent density of 1110kg/m3, compressive strength of 18.8MPa in 28 days, and thermal conductivity of 0.38w/(m.K) was obtained.


2011 ◽  
Vol 306-307 ◽  
pp. 994-997
Author(s):  
Cong Cong Jiang ◽  
Guo Zhong Li ◽  
Shui Zhang

A cement-based foamed lightweight thermal insulation material was prepared with cement, industrial waste (fly ash, steel slag) as the main raw materials, by using self-developed composite activator and foaming agent. The influence of foam content on dry density, compressive strength and thermal conductivity coefficient of material was studied, the activation mechanism of composite activator to fly ash and steel slag was discussed. Results showed that, the dry density and compressive strength of material decreased, and thermal conductivity coefficient decreased first and then increased with the increasing foam content.


2020 ◽  
Vol 10 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Marina Jovanović ◽  
Adnan Mujkanović ◽  
Erna Tutić

The paper analyses the influence of cigarette butts and waste coffee grounds addition on the properties of the brick clay. The waste materials were added to the clay in amounts of 5 wt.% and 10 wt.%. Standard consistency, plasticity, drying and firing behaviour and refractoriness were tested on the clay sample and the samples with wastes additions. Apparent density, apparent porosity, water absorption, strength and thermal conductivity were investigated on the samples fired at 1173 K. Addition of the waste materials improved thermal insulation characteristics and drying shrinkage, while other properties remain within the required limits for brick industry


2021 ◽  
Vol 11 (3) ◽  
pp. 1037
Author(s):  
Se-Jin Choi ◽  
Ji-Hwan Kim ◽  
Sung-Ho Bae ◽  
Tae-Gue Oh

In recent years, efforts to reduce greenhouse gas emissions have continued worldwide. In the construction industry, a large amount of CO2 is generated during the production of Portland cement, and various studies are being conducted to reduce the amount of cement and enable the use of cement substitutes. Ferronickel slag is a by-product generated by melting materials such as nickel ore and bituminous coal, which are used as raw materials to produce ferronickel at high temperatures. In this study, we investigated the fluidity, microhydration heat, compressive strength, drying shrinkage, and carbonation characteristics of a ternary cement mortar including ferronickel-slag powder and fly ash. According to the test results, the microhydration heat of the FA20FN00 sample was slightly higher than that of the FA00FN20 sample. The 28-day compressive strength of the FA20FN00 mix was approximately 39.6 MPa, which was higher than that of the other samples, whereas the compressive strength of the FA05FN15 mix including 15% of ferronickel-slag powder was approximately 11.6% lower than that of the FA20FN00 mix. The drying shrinkage of the FA20FN00 sample without ferronickel-slag powder was the highest after 56 days, whereas the FA00FN20 sample without fly ash showed the lowest shrinkage compared to the other mixes.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1816 ◽  
Author(s):  
Marcin Borowicz ◽  
Joanna Paciorek-Sadowska ◽  
Jacek Lubczak ◽  
Bogusław Czupryński

This article raised the issue of studies on the use of new bio-polyol based on white mustard seed oil and 2,2’-thiodiethanol (3-thiapentane-1,5-diol) for the synthesis of rigid polyurethane/polyisocyanurate (RPU/PIR) foams. For this purpose, new formulations of polyurethane materials were prepared. Formulations contained bio-polyol content from 0 to 0.4 chemical equivalents of hydroxyl groups. An industrial flame retardant, tri(2-chloro-1-methylethyl) phosphate (Antiblaze TCMP), was added to half of the formulations. Basic foaming process parameters and functional properties, such as apparent density, compressive strength, brittleness, absorbability and water absorption, aging resistance, thermal conductivity coefficient λ, structure of materials, and flammability were examined. The susceptibility of the foams to biodegradation in soil was also examined. The increase in the bio-polyol content caused a slight increase in processing times. Also, it was noted that the use of bio-polyol had a positive effect on the functional properties of obtained RPU/PIR foams. Foams modified by bio-polyol based on mustard seed oil showed lower apparent density, brittleness, compressive strength, and absorbability and water absorption, as well as thermal conductivity, compared to the reference (unmodified) foams. Furthermore, the obtained materials were more resistant to aging and more susceptible to biodegradation.


2010 ◽  
Vol 152-153 ◽  
pp. 1176-1179 ◽  
Author(s):  
Feng Lan Li ◽  
Qian Zhu

To improve the application of the new proto-machine-made sand in structural engineering, tests are carried out to study the drying shrinkage of concrete affected by stone powder in proto- machine-made sand. The target cubic compressive strength of concrete is 55 MPa, the main factor varied in mix proportion of concrete is the contents of stone powder by mass of proto-machine-made sand from 3 % to 16 %. The drying shrinkage strains of concrete are measured by the standard method at the ages of 1 d, 3 d, 7 d, 14 d, 28 d, 60 d, 90 d, 120 d, 150 d and 180 d. Based on test results, the drying shrinkage of concrete affected by the contents of stone powder in proto-machine-made sand is analyzed and compared with that of similar test of concrete with traditional machine-made sand, which shows that there is the optimum content of stone powder resulting in the lower drying shrinkage of concrete. The formula for predicting drying shrinkage strain of concrete is proposed.


2013 ◽  
Vol 639-640 ◽  
pp. 325-328
Author(s):  
Yan Jia Guo ◽  
Zhu Li ◽  
Yuan Zhen Liu ◽  
Shang Song Qin

Based on the compressive strength, the thermal conductivity, the elastic modulus and the steel bond strength of thermal insulation glazed hollow bead concrete, referring to the carbonation mechanism and the influence factors of the ordinary concrete, considering the impact of raw materials and the influence of construction technology, the study on thermal insulation glazed hollow bead concrete anti-carbonation was proposed. From the test results, it can conclude that for the same intensity level, the anti-carbonation capacity of the thermal insulation glazed hollow bead concrete is better than that of the ordinary concrete. For different strength grade of thermal insulation glazed hollow bead concrete, to some extend, the higher the intensity level is, the stronger the ability of thermal insulation glazed hollow bead concrete anti-carbonation is.


Sign in / Sign up

Export Citation Format

Share Document