Improvment of Thermal Power Plant Construction Features and Technology

2014 ◽  
Vol 711 ◽  
pp. 426-429
Author(s):  
Xiao Dong Ma

In thermal power engineering construction, the main building is a great project, in which the construction time, key engineering technology is difficult. It is also a wide range, strong professional structure of the system, it is closely related to the development of construction technology, the need to gradually improve building materials production level and engineering practice. Main factory building structure system to achieve light weight, high strength, reliable technology, economy applicable, expanding for dry operation, should be combined closely with plant production process, good solution can be achieved. Therefore, choose the main factory building structure, give full play to the bearing capacity of each structure, improve the level of main factory building design, construction technology ,to accelerate the progress of main building structure system plays an important role.

2012 ◽  
Vol 450-451 ◽  
pp. 870-876
Author(s):  
Ling Cai ◽  
Yi Deng ◽  
Xing Jiang

Abstract: The building structure of a Dong nationality’s drum tower is divided into two categories, namely, the tai-liang and chuan-dou hybrid structures, and the chuan-dou structure, which are from the major carpentry structure system of traditional Chinese timber structure architecture. Then, the most common “centro-column” type drum tower among the chuan-dou structure drum towers is defined and classified. The structure technology features of “single-column” and “ringed-column” drum towers, which are also those of a “centro-column” drum tower, are discussed in great detail. Through surveying and mapping, structure conversion models, such as those that “increased columns” and “reduced columns” of “ringed-column” drum towers, are studied mainly. In addition, many specific construction details that improve a drum tower’s external image, like multi-eaves, columns that are inclined inwards, as well as the honeycomb Dougong, are also studied in this paper.


CONVERTER ◽  
2021 ◽  
pp. 30-36
Author(s):  
Li Jianghua, Weng Mei

With the development of China's construction field, prefabricated building structure has gradually become a very common building structure in the current construction engineering by virtue of its many advantages in the actual construction field. Combined with the engineering practice, this paper summarizes the hoisting technology of precast composite slab and precast staircase in prefabricated building structure. This paper focuses on the optimization design of laminated plate support under the conditions of wood formwork and aluminum formwork system and the key and difficult points in the construction process, and puts forward a set of practical and feasible construction methods for prefabricated components. This paper focuses on the analysis of the design concept, materials, structural form, manufacturing technology, hoisting and installation, and construction technology of M-type light steel concrete composite slab. This paper discusses and summarizes the advantages and disadvantages of M-type light steel reinforced concrete composite slab at present, and analyzes its development and application prospects. At the same time, in order to determine the reasonable type of laminated plate, the material budget analysis of assembled laminated plates with different structural forms is carried out. The conclusions are as follows: PK prestressed concrete composite slab has great advantages in the whole material budget cost, which is suitable for all kinds of span buildings. One way steel truss slab and YH prestressed concrete composite slab are suitable for small span buildings.


2010 ◽  
Vol 163-167 ◽  
pp. 471-474
Author(s):  
Wen Yi ◽  
Yong He Wang ◽  
Rui Zhou

The wide range of grouting technology, theory and construction technology are relatively mature, but as a result of the promotion of its application is still uneven, and grouting construction works are hidden, so often cost more is spent in grouting reinforcement work, but the expected results of the problem is not yet achieved. In this paper, it is given a comprehensive summary of the effect of grouting and the application of inspection techniques. It is given analysis of the key issues of technology, and hopes to provide reference with the grouting reinforcement of engineering practice.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1267
Author(s):  
David Längauer ◽  
Vladimír Čablík ◽  
Slavomír Hredzák ◽  
Anton Zubrik ◽  
Marek Matik ◽  
...  

Large amounts of coal combustion products (as solid products of thermal power plants) with different chemical and physical properties cause serious environmental problems. Even though coal fly ash is a coal combustion product, it has a wide range of applications (e.g., in construction, metallurgy, chemical production, reclamation etc.). One of its potential uses is in zeolitization to obtain a higher added value of the product. The aim of this paper is to produce a material with sufficient textural properties used, for example, for environmental purposes (an adsorbent) and/or storage material. In practice, the coal fly ash (No. 1 and No. 2) from Czech power plants was firstly characterized in detail (X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX), particle size measurement, and textural analysis), and then it was hydrothermally treated to synthetize zeolites. Different concentrations of NaOH, LiCl, Al2O3, and aqueous glass; different temperature effects (90–120 °C); and different process lengths (6–48 h) were studied. Furthermore, most of the experiments were supplemented with a crystallization phase that was run for 16 h at 50 °C. After qualitative product analysis (SEM-EDX, XRD, and textural analytics), quantitative XRD evaluation with an internal standard was used for zeolitization process evaluation. Sodalite (SOD), phillipsite (PHI), chabazite (CHA), faujasite-Na (FAU-Na), and faujasite-Ca (FAU-Ca) were obtained as the zeolite phases. The content of these zeolite phases ranged from 2.09 to 43.79%. The best conditions for the zeolite phase formation were as follows: 4 M NaOH, 4 mL 10% LiCl, liquid/solid ratio of 30:1, silica/alumina ratio change from 2:1 to 1:1, temperature of 120 °C, process time of 24 h, and a crystallization phase for 16 h at 50 °C.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Raed I. Bourisli ◽  
Adnan A. AlAnzi

This work aims at developing a closed-form correlation between key building design variables and its energy use. The results can be utilized during the initial design stages to assess the different building shapes and designs according to their expected energy use. Prototypical, 20-floor office buildings were used. The relative compactness, footprint area, projection factor, and window-to-wall ratio were changed and the resulting buildings performances were simulated. In total, 729 different office buildings were developed and simulated in order to provide the training cases for optimizing the correlation’s coefficients. Simulations were done using the VisualDOE TM software with a Typical Meteorological Year data file, Kuwait City, Kuwait. A real-coded genetic algorithm (GA) was used to optimize the coefficients of a proposed function that relates the energy use of a building to its four key parameters. The figure of merit was the difference in the ratio of the annual energy use of a building normalized by that of a reference building. The objective was to minimize the difference between the simulated results and the four-variable function trying to predict them. Results show that the real-coded GA was able to come up with a function that estimates the thermal performance of a proposed design with an accuracy of around 96%, based on the number of buildings tested. The goodness of fit, roughly represented by R2, ranged from 0.950 to 0.994. In terms of the effects of the various parameters, the area was found to have the smallest role among the design parameters. It was also found that the accuracy of the function suffers the most when high window-to-wall ratios are combined with low projection factors. In such cases, the energy use develops a potential optimum compactness. The proposed function (and methodology) will be a great tool for designers to inexpensively explore a wide range of alternatives and assess them in terms of their energy use efficiency. It will also be of great use to municipality officials and building codes authors.


2021 ◽  
Vol 2088 (1) ◽  
pp. 012033
Author(s):  
O V Mitrofanova ◽  
A V Fedorinov

Abstract The theoretical and computational analysis proposed in this work is aimed at identifying the features of thermal and hydrodynamic processes carried out in the steam-generating channels of the ship type water-moderated nuclear power installations. It is shown that the complex geometry of the thermohydraulic tract curvilinear channels of the steam generating system has a significant effect on the efficiency of the transport nuclear power installation. In addition to the formation of large-scale vortex structures and swirling flow in the pipeline, the phenomenon of the swirling flow crisis is revealed, under which the low-frequency component of the acoustic spectrum is enhanced. The scientific and applied significance of the proposed research is associated with the need to ensure a wide range of operational changes in efficient and safe operation power modes of icebreaker nuclear power installations. The research, aimed at developing the principles of physical and mathematical modeling of complex vortex flows, is necessary to optimize the design parameters of the thermal power equipment elements of new generation ship nuclear power installations in order to ensure increased safety and reliability of their operation.


2019 ◽  
Vol 35 (3) ◽  
pp. 1311-1328 ◽  
Author(s):  
Ganyu Teng ◽  
Jack Baker

This paper evaluates CyberShake (version 15.12) ground motions for potential application to high-rise building design in the Los Angeles region by comparing them against recordings from past earthquakes as well as empirical models. We consider two selected sites in the Los Angeles region with different underlying soil conditions and select comparable suites of ground motion records from CyberShake and the NGA-West2 database according to the ASCE 7-16 requirements. Major observations include (1) selected ground motions from CyberShake and NGA-West2 share similar features, in terms of response spectra and polarization; (2) when selecting records from Cyber-Shake, it is easy to select motions with sources that match the hazard deaggregation; (3) CyberShake durations on soil are consistent with the empirical models considered, whereas durations on rock are slightly shorter; (4) occasional excessive polarization in ground motion is produced by San Andreas fault ruptures, though those records are usually excluded after the ground motion selection. Results from this study suggest that CyberShake ground motions are a suitable and promising source of ground motions for engineering evaluations.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2887 ◽  
Author(s):  
Salvatore Ranieri ◽  
Gilberto Prado ◽  
Brendan MacDonald

Stirling engines have a high potential to produce renewable energy due to their ability to use a wide range of sustainable heat sources, such as concentrated solar thermal power and biomass, and also due to their high theoretical efficiencies. They have not yet achieved widespread use and commercial Stirling engines have had reduced efficiencies compared to their ideal values. In this work we show that a substantial amount of the reduction in efficiency is due to the operation of Stirling engines using sinusoidal motion and quantify this reduction. A discrete model was developed to perform an isothermal analysis of a 100cc alpha-type Stirling engine with a 90 ∘ phase angle offset, to demonstrate the impact of sinusoidal motion on the net work and thermal efficiency in comparison to the ideal cycle. For the specific engine analyzed, the maximum thermal efficiency of the sinusoidal cycle was found to have a limit of 34.4%, which is a reduction of 27.1% from Carnot efficiency. The net work of the sinusoidal cycle was found to be 65.9% of the net work from the ideal cycle. The model was adapted to analyze beta and gamma-type Stirling configurations, and the analysis revealed similar reductions due to sinusoidal motion.


2012 ◽  
Vol 246-247 ◽  
pp. 505-508
Author(s):  
Jian Meng Yang ◽  
Wang Wei ◽  
Nian Zhe Qi

This paper took one 330MW unit boiler in one power plant as an example, then doing some research about the boiler system energy change through doing exergy analysis. After this, the exergy flow equation was established, the energy transfer, utilize and loss of the thermal power plant production was revealed, the exergy efficiency of the boiler was defined. So the paper can provide a basis for energy utilization of power plant.


Sign in / Sign up

Export Citation Format

Share Document