The Experimental Study on Infrared Dryer for Corn

2015 ◽  
Vol 723 ◽  
pp. 711-714
Author(s):  
Chun Shan Liu ◽  
Si Yu Chen ◽  
Wen Fu Wu ◽  
Jun Fa Wang ◽  
Hai Bo Zhou

To understand the drying characteristics of corn in infrared drying process, the research of corn post-harvest drying experiment was developed on self-developed infrared grain dryer. Analysing the influence of hot air temperature by blast capacity and the outlet size of air distribution under the full load condition, the change rules of the corn moisture content, the temperature change and the energy consumption characteristics during the drying process have been researched.

Foods ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 101 ◽  
Author(s):  
Senadeera ◽  
Adiletta ◽  
Önal ◽  
Di Matteo ◽  
Russo

Drying characteristics of persimmon, cv. “Rojo Brillante”, slabs were experimentally determined in a hot air convective drier at drying temperatures of 45, 50, 55, 60, and 65 °C at a fixed air velocity of 2.3 m/s. It was observed that the drying temperature affected the drying time, shrinkage, and colour. Four empirical mathematical models namely, Enderson and Pabis, Page, Logarithmic, and Two term, were evaluated in order to deeply understand the drying process (moisture ratio). The Page model described the best representation of the experimental drying data at all investigated temperatures (45, 50, 55, 60, 65 °C). According to the evaluation of the shrinkage models, the Quadratic model provided the best representation of the volumetric shrinkage of persimmons as a function of moisture content. Overall, higher drying temperature (65 °C) improved the colour retention of dried persimmon slabs.


2011 ◽  
Vol 66-68 ◽  
pp. 573-576
Author(s):  
Chun Shan Liu ◽  
Wen Fu Wu ◽  
Jia Yao ◽  
Ya Qin Li ◽  
Chuang Liu

The purpose of this study is to explore the effecting principle in the drying process. The factors such as hot air temperature, hot air flow, drying time on the grain moisture content have been all investigated. Using UD to establish the optimization mathematics model which making the grain dryer moisture content as the goal of the design, making the factors of hot air flow, drying time, air temperature as parameters, with the help of UD to analysis the effecting principle of the drying process parameters on the grain moisture content, some references have been provided to the tower dryer.


2012 ◽  
Vol 8 (3) ◽  
Author(s):  
Yoshiki Muramatsu ◽  
Eiichiro Sakaguchi ◽  
Takahiro Orikasa ◽  
Akio Tagawa

Abstract The drying characteristics and volume changes of scarlet runner beans were measured under various conditions to obtain useful basic information for the optimum drying method and conditions. The sample was dried using two drying methods: hot air drying and vacuum drying. The measured changes in moisture content of the sample with the hot air drying process were in good agreement with the exact solution of the infinite plane sheet model. The estimated diffusion coefficients were 3.8×10 -7 -7.4×10 -7 (m 2 h -1) for hot air drying and were related to absolute temperature by an Arrhenius-type equation. The hull of the scarlet runner bean is hard and thick, and the drying rate of the sample was much slower than that of other beans. To establish an efficient drying method without the quality loss, the vacuum drying characteristics of the sample were measured at several levels for temperature and initial moisture content. For the vacuum drying process, an exponential model could be used to estimate the changes in moisture content of the sample. The values of diffusion coefficient for vacuum drying were approximately twice as much as the values of diffusion coefficient for hot air drying at the same temperature. The effects of drying method, temperature, and initial moisture content on the sample quality were investigated, and the optimum drying method and conditions for scarlet runner beans were proposed. Volumetric changes in the sample were determined by measuring particle density. The specific volume of the sample was represented as a linear function of moisture content.


2012 ◽  
Vol 490-495 ◽  
pp. 3074-3078
Author(s):  
Chun Shan Liu ◽  
Wen Fu Wu ◽  
Jia Song ◽  
Ya Qiu Zhang ◽  
Jun Xing Li ◽  
...  

In order to solve the drying problems in the deep-processing of pepper, peppers were dried through blanching pre-treatment and hot-air drying process. Orthogonal test designs were carried out to investigate factors influencing the quality and moisture content of pepper. The results showed that the whole drying process was a reduction speed drying, hot-air temperature and wind speed have significantly affected on the drying rate of pepper, but the impact of hot-air temperature was more prominent than wind speed; hot-air temperature was found to be the primary parameter to affect the quality of the pepper, wind speed was the secondary one and followed by packing thickness; drying time was found to be the primary parameter to affect the moisture content of the pepper in the drying process, the best drying conditions were as follows: wind temperature was 80°C, wind speed was 10 m/s, packing thickness was 80 cm, drying time was 12 h after 100°C steam blanching pre-treatment


2012 ◽  
Vol 326-328 ◽  
pp. 267-272 ◽  
Author(s):  
J. Barbosa da Silva ◽  
G. Silva Almeida ◽  
Gelmires Araújo Neves ◽  
W.C.P. Barbosa de Lima ◽  
Severino Rodrigues de Farias Neto ◽  
...  

The purpose of this paper is to present an experimental study of brick drying. For the drying experiments, industrial brick (clay) was dried in an oven under controlled conditions of air velocity, air temperature and air relative humidity. The continuous drying experiments ended when the mass reached constant weight. In order, to obtain the balanced moisture content, each sample was kept under the same drying air temperature for 48 hours inside the oven. The tests were performed under atmospheric pressure. Results of the drying and heating kinetics and volume variations during the process are shown and analyzed. It was verified that air temperature has big influence in the drying rate during process. It was verified that the largest temperature, moisture content and stress gradients are located in the vertexes of the brick. The drying process happens in the falling drying rate period.


2021 ◽  
Vol 51 (2) ◽  
pp. 119-126
Author(s):  
İbrahim Doymaz ◽  
Mehmet Soydan

In this experimental study, cultivar of Granny Smith apple slices were dried by using convective hot air tray dryer. Before drying process, the pretreatment methods with ascorbic acid and citric acid solution (0.5% + 0.5%), blanching (80°C and 1 min) and potassium carbonate solution (4%) were carried out. Control samples were dried naturally without any pretreatments. Temperatures for hot air convective drying were decided as 50, 60, 70 and 80°C with constant air velocity of 2 m/s in the cabinet dryer. Throughout the drying process, constant drying period was not observed. Once the temperatures increased from 50 to 80°C, drying rate also increased. Well-known mathematical models such as Henderson & Pabis, Page, Midilli & Kucuk, Wang & Singh and Agbashlo et al. were compared with each other to specify the change of moisture inside the material. Consequently, Midilli & Kucuk model was chosen the best model to explain the drying characteristics of the samples with all slice thicknesses and all drying conditions. Diffusivity coefficients of the moisture transfer inside the apple slices at different temperatures (50, 60, 70 and 80°C) were calculated with the help of Fick’s second law of diffusion. The values of diffusion coefficients over the mentioned temperature range changed between 4.804´10-10 and 1.739´10-9 m2/s. The activation energy values of the drying process were calculated by Arrhenius type equation and found to be 36.1, 32.5, 29.8 and 32.1 kJ/mol for potassium carbonate, citric acid and ascorbic acid mixture, blanching and control samples, respectively.


2018 ◽  
Vol 24 (5) ◽  
pp. 382-393 ◽  
Author(s):  
Monia Jebri ◽  
José Tarrazó ◽  
José Bon ◽  
Hélène Desmorieux ◽  
Mehrez Romdhane

The current study deals with an innovation in the hot air convective drying process consisting of the application of two consecutive drying steps. Temperatures ranging between 60 and 80 ℃ for times between 200 and 600 s were applied for the first stage, and from 40 to 80 ℃ for the second stage. Salvia officinalis, an aromatic, medicinal Mediterranean plant with remarkable antioxidant properties, was selected for this study. A management of the process regarding the antioxidant capacity of S. officinalis extracts and energy consumption was carried out: (i) artificial neural networks were applied to model the evolution of the antioxidant capacity and moisture content of the product in the drying process; (ii) a genetic algorithm and a multiobjective genetic algorithm were selected to optimize the drying process, considering the antioxidant capacity and/or the energy consumption in the objective function. The results showed that the optimum values depended, logically, on the controllable variables values (hot air temperatures and drying times), but also on the uncontrollable variable values (room air temperature and relative humidity and the product’s initial mass and moisture content).


2013 ◽  
Vol 724-725 ◽  
pp. 296-299
Author(s):  
Chun Xiang Chen ◽  
Xiao Qian Ma ◽  
Xiao Cong Li ◽  
Wei Ping Qin

To find out an alternative of coal saving, a kind of microalgae, Chlorella vulgaris (C. vulgaris) which is widespread in fresh water was studied by digital blast drying system. The effect of the moisture content, drying thickness and temperature on the drying process of C. vulgaris were investigated. The results indicated that when the drying temperature is high, the moisture content is low and the material thickness is small, the drying time is short. The drying process of C.vulgaris can be divided into two stages, and the mass loss is mainly occurred in the second stage . The results will provide guidance for design of drying process and dryer of microalgae.


2013 ◽  
Vol 12 (21) ◽  
pp. 6154-6158
Author(s):  
Xiao Kang-Yi ◽  
Chuan Feng-Li ◽  
Shu Gang-Li ◽  
He Lei Cui ◽  
Wen Fu-Wu

Sign in / Sign up

Export Citation Format

Share Document