Synthesis and Characterization of Nanofibres of 2ZnO·3B2O3·5H2O Ceramic Composite Using the Sol-Gel Processing and the Electrospinning Techniques

2015 ◽  
Vol 749 ◽  
pp. 169-173 ◽  
Author(s):  
Fatih Sevim ◽  
Adem Kara ◽  
Oguz Aksakal ◽  
Fatih Demir ◽  
Hayrettin Eroglu

2ZnO.3B2O3.nH2O (Zinc borate) having the industrially important composite and used as flame retardant, anti-smoke and semiconductor in the electronic circuits was examined different crystal structures. In this study, nanofibers of PVA /zinc nitrate/ boric acid composite were prepared by using sol-gel processing and electrospinning technique. By high temperature calcinations of the above precursor fibers, nanofibers of 2ZnO.3B2O3.5H2O composite with diameters of 110 nm could be successfully obtained. The products have been characterized by X-ray powder diffraction (XRD), thermogravimetry (TG) and differential thermal analysis (DTA), scanning electron microscopy (SEM) and FT-IR (Fourier transform-infrared spectroscopy). The effects of experimental conditions on the products were investigated.

2013 ◽  
Vol 562-565 ◽  
pp. 908-913 ◽  
Author(s):  
Rong Li Sang ◽  
Ying Chen ◽  
Qing Jun Zhang ◽  
Lin Wang

By sol-gel processing and electrospinning technique, ultrathin fibers of PVP/ ZnTiO3:Pb2+ composites were synthesized. After calcined of the fibers at 600°C, the spinel ZnTiO3:Pb2+ nanofibers, with a diameter of 100-200nm, were successfully obtained. The scanning electron microscopy (SEM), fourier transform infrared (FT-IR), X-ray diffraction (XRD) and photoluminescence (PL) were employed in the study. The results displayed that the morphology and crystalline phase of the fibers were greatly affecteded by the calcination temperature. The PL spectra of the samples measured at different excitation wavelength reveal a novel luminescent phenomenon in blue and green region, which can be attributed to the Pb2+-related charge-transfer transitions in ZnTiO3 nanofibers.


2013 ◽  
Vol 562-565 ◽  
pp. 57-61
Author(s):  
Rong Li Sang ◽  
Jun Shao ◽  
Lin Wang

Ultrathin fibers of PVP/ZnTiO3 composite were prepared through sol-gel processing and electrospinning technique. After calcined of the above precursor fibers at 600°C, the spinel ZnTiO3 nanofibers, with a diameter of 50-150nm, were successfully obtained. The fibers were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and fourier transform infrared (FT-IR), respectively. The results displayeded that the morphology and crystalline phase of the fibers were largely influenced by the calcination temperature. The reported strategy will be useful for fabricating one-by-one continuous nanofibers, which are suitable for applications in catalysis, chemical sensors, nanoelectrodes, and nanodevices.


2012 ◽  
Vol 557-559 ◽  
pp. 1501-1504 ◽  
Author(s):  
Zu Zeng Qin ◽  
Zi Li Liu ◽  
Yan Bin Liu ◽  
Rui Wen Liu

The preparation of the Fe-Mo-Ni catalyst using the sol-gel method was investigated. In addition, the catalytic selective oxidations of p-xylene (PX) to terephthalaldehyde (TPAL) on the Fe-Mo-Ni catalyst were also investigated. The catalysts were characterized using thermal analysis, H2-temperature programmed reduction (H2-TPR), Fourier transform infrared spectra (FT-IR), and X-ray photoelectron spectrum (XPS). The additional of Ni improves the catalytic activity of the Fe-Mo catalyst on selective oxidations of PX to TPAL. The optimal additive amount of Ni is 5%. XPS analysis shows that the introduction of Ni changes the internal structure of the Fe-Mo catalyst improves catalytic performance.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
A. K. Bordbar ◽  
A. A. Rastegari ◽  
R. Amiri ◽  
E. Ranjbakhsh ◽  
M. Abbasi ◽  
...  

Magnetite Fe3O4 nanoparticles (NPs) were prepared by chemical coprecipitation method. Silica-coated magnetite NPs were prepared by sol-gel reaction, subsequently coated with 3-aminopropyltriethoxysilane (APTES) via silanization reaction, and then were activated with 2,4,6-trichloro-1,3,5-triazine (TCT) and covalently immobilized with bovine serum albumin (BSA). The size and structure of the particles were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and dynamic light scattering (DLS) techniques. The immobilization was confirmed by Fourier transform infrared spectroscopy (FT-IR). XRD analysis showed that the binding process has not done any phase change to Fe3O4. The immobilization time for this process was 4 h and the amount of immobilized BSA for the initial value of 1.05 mg BSA was about 120 mg/gr nanoparticles. Also, the influences of three different buffer solutions and ionic strength on covalent immobilization were evaluated.


2011 ◽  
Vol 233-235 ◽  
pp. 1188-1191
Author(s):  
Hong Cai ◽  
Yan Chen ◽  
Yun Ying Wu

Nano-TiO2 particles were prepared by sol-gel method, of which the surfaces were coated by SiO2. The coating was achieved by the hydrolysis of sodium silicate (Na2SiO3) in ammonium chloride (NH4Cl). The surface bonding, phase constitution and chemical components of the samples were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction(XRD) and X-ray photoelectron spectroscopy (XPS). The mechanism of the SiO2 coating process onto TiO2 surface was analyzed. Results show that SiO2 particles were immobilized on the TiO2 surface via Ti—O—Si bondings, which formed at the interface. The SiO2 layer on TiO2 surface was amorphous, the photocatalytic performance was decreased of the TiO2 while its stability was enhanced after surface modification.


Author(s):  
Thoker Bilal Ahmad ◽  
Ahmad Bhat Asif ◽  
wani Atif Khurshid ◽  
Ayoub Kaloo Masood ◽  
Shergojri Gulzar Ahmad

To investigate morphological, optical and antibacterial properties of SnO2 nanoparticles which are synthesized by using an easy and affordable Sol-Gel method. By using various techniques such as XRD (X-ray Powder Diffraction), FT-IR (Fourier Transform Infrared), UV-Vis, PL, SEM (Search Engine Marketing), EDAX (Energy Dispersive X-Ray Analysis), the structural, optical, composition of elements and the size of the SnO2 nanoparticles (NPs) has been discussed. The variation in properties of SnO2 as synthesized and at annealing temperatures has also been discussed. Size of tin oxide Nano particles from XRD is found in the range of 9-10 nm, and the lattice parameters about a=b=4.73060A, c=3.690A. From UV-Vis it is found that the band gap of tin oxide decreases as we increase the temperature. Active efficiency of SnO2 NPs has been tested on Gram negative (E.coli) and gram positive (Micrococcus luteus) bacteria on the growth of pure culture using zone inhibition method.


2017 ◽  
Vol 748 ◽  
pp. 413-417
Author(s):  
Chun Yu Long ◽  
Fang Fang Peng ◽  
Min Min Jin ◽  
Pei Song Tang ◽  
Hai Feng Chen

Using Pr (NO3)3, butyl titanate, ethylene glycol and citric acid as main raw materials, praseodymium titanate (Pr2Ti2O7) was prepared by the sol-gel process. The samples were characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), thermal gravity-differential thermal analysis (TG-DTA), diffuse-reflection spectra (DRS) and Fourier transform infrared (FT-IR). The effect of different calcination temperature and illumination time on the photocatalytic properties of Pr2Ti2O7 was investigated. It was found that the single phase Pr2Ti2O7 could be obtained through sol-gel process and calcination at 1000 °C. The Pr2Ti2O7 samples calcination at 1000 °C were uniform , and the resulting product had a particle size of 200 nm and an optical band gap of 3.26 eV. Under ultraviolet light, the degradation of methyl orange arrived to 80.11% after 180 min of photocatalytic reaction. The Pr2Ti2O7 samples showed good photocatalytic activity for decomposition of methyl orange.


2018 ◽  
Vol 18 (3) ◽  
pp. 460-469
Author(s):  
Shaima'a J Kareem

In this paper, studying synthesis zinc oxide nanoparticles (ZnO NPs) via sol - gel methodand effect of adding polymer in preparation its solution. Zinc nitrate hexahydrate,Polyvinylpyrrolidone PVP, distilled water and sodium hydroxide (NaOH) were used asprecursor materials. Crystallization behavior of the ZnO was studied by X-ray diffraction(XRD). Nanoparticles phases can change from amorphous to wurtzite structure at thecalcination temperature (500 °C) and crystallite size by Scherrer’s formula about (21.131)nm for samples prepared with distilled water and (20.035)nm for samples prepared withdissolved PVP. Morphological and structural properties were investigated by scanningelectron microscopy (SEM). FT-IR spectra was indicated characteristic absorption bands ofZnO. UV-Vis absorption spectrum was shown a typical spectrum for ZnO nanoparticles.Finally, the results were shown the samples with dissolved PVP has smaller particles size,less agglomeration and narrow distribution but less purity phase when compared withsamples prepared with distilled water.


2014 ◽  
Vol 941-944 ◽  
pp. 555-559
Author(s):  
Xiao Li Tian ◽  
Qun Hu Xue ◽  
Chong Bo Xue

Al2O3–ZrO2 ceramic composite samples were prepared using Al2O3–ZrO2 composite powder synthesized by sol-gel processing as the main starting material and zirconia gel as the binder. Then the mineral phases were analyzed by X-ray diffraction (XRD) and the crystal bonding mechanism was analyzed by scanning electron microscopy (SEM). The results show that: 1) the mineral phases were monoclinic zirconia, tetragonal zirconia and corundum. The microstructure shows an alumina-zirconia diffusion mosaic structure and the grain boundary interface with direct bonding state. 2) The crystal growth model was the Ostwald dual growth model of the alumina and zirconia grains, and the crystal bonding mechanism was that the intragranular zirconia grain exited within the alumina grain and the intergranular zirconia grain exited during the alumina grain boundaries.


2012 ◽  
Vol 624 ◽  
pp. 34-37
Author(s):  
Xiao Yan Zhang ◽  
Wen Shu Hu ◽  
Xi Wei Qi ◽  
Gui Fang Sun ◽  
Jian Quan Qi ◽  
...  

Bi2Al4O9 powders were prepared by sol-gel process. The precursors were heated at 500-800°C for 2h to obtain Bi2Al4O9 powder and X-ray diffraction (XRD), Differential thermal analysis (DTA), thermogravimetric analysis (TG), field emission scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR) techniques were used to characterize precursor and derived oxide powders. XRD analysis show that the powder is still amorphous after calcined at 500°C. The peaks of Bi2Al4O9 become sharp after calcined at 575°C though still existing some amorphous phase. After calcining at 675-800°C, the powder has fully turned into pure Bi2Al4O9 phase. The crystallization process can also be confirmed by DTA-TG and IR. Calcining the precursor at 575°C, the absorption bands at 527 cm-1, 738 cm-1, 777 cm-1, and 919 cm-1are observed, which are assigned to Bi2Al4O9 and becoming stronger and sharper with the increase of temperature.


Sign in / Sign up

Export Citation Format

Share Document