Selection of Insulation Materials and Insulation Performance with Consideration of Building Energy when Designing a Building

2015 ◽  
Vol 752-753 ◽  
pp. 724-727
Author(s):  
Young Sun Jeong

Building designs should be reviewed from the aspects of both design aesthetics and energy performance. The installation of insulation materials in external walls, roofs, and floors is a basic method that could reduce energy losses from buildings. The purpose of this study is to investigate the types of insulation materials selected as building materials and the insulation performance of each building elements when designing new buildings in South Korea. The insulation performance of the external walls, roofs, and floors of buildings were compared with the insulation criteria of the Energy Saving Design Standards of Buildings in building energy code. The design documents, as well as drawings and building energy saving plan sheets, which are required to be submitted for buildings larger than a certain size in South Korea, were collected. The most widely used insulation material in multi-family housings and non-residential buildings was extruded polystyrene (XPS). The insulation performance of external walls, roofs, and floors were higher than that established by design criteria of building energy code. In particular, the external walls had roughly a 25.5% better insulation performance than the insulation criteria.

2014 ◽  
Vol 716-717 ◽  
pp. 533-536
Author(s):  
Jing Wang ◽  
Zhan She Yang

Energy saving of buildings in our country started from 90’s,which is so late that remaining at a low level .Although certain success has been achieved ,architecture reconstruction moves slowly on the whole ,especially for residential buildings. One of the reasons for this situation is lacking of money for energy saving reconstruction .Considering the enormous number of energy saving reconstruction buildings with the limited funds ,human resource and material resource, it is necessary to make a selection before the reconstruction ,weeding out the projects that are too poor to reconstruct in safety, functionality and energy-saving reconstruction, as well as the ones that have good energy saving performance and meet the energy efficiency design standards, which aren’t built for ages. The key point is to choose the existing buildings which are in urgent need of transformation in performance, economically rational and have feasible technic proceeding in batches with plans. Meanwhile, the reconstruction should use appropriate technology, combining with local climate characteristics.


2014 ◽  
Vol 533 ◽  
pp. 135-139
Author(s):  
Jia Hui Huang

Building Energy Conservation, especially the research about residential building energy in face of the worldwide energy crisis is particularly urgent. At present, various countries have an in-depth study of the residential building energy to explore different methods, new building materials, and new technology(such as new thermal windows and doors), as well as the use of new energy has been put more attention to in energy conservation field. Comparing the residential buildings between domestic and overseas countries’ progress about related technologies, we could find some evolution and look to the prospects for the future in energy-saving field. We took a domestic project that used energy-saving technology as a practical example, and then made a simple overview of the current energy situation in China so as to get a glimpse of the development about residential building energy-saving. Finally, the article provided some comments about this topic in sustainable view.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012075
Author(s):  
O M Jensen ◽  
J Rose ◽  
J Kragh ◽  
C H Christiansen ◽  
M Grimmig ◽  
...  

Abstract In 1990, Technological Institute (TI) in Denmark made a benchmarking study of 92 typical multi-storey buildings covering 23 000 dwellings. The study included measurement data from the 1970s and the years after the energy crises. This study showed that over a period of less than 20 years a significant reduction in energy consumption took place. In a new similar study, TI and Aalborg University have analysed 62 buildings covering 18 000 dwellings including measurement data from the last 20 years. This time, the data covers a period with an increasing focus on the carbon-emission impacts of energy consumption. As opposed to the first benchmarking study, the new 20-years study shows that the heat consumption has been almost constant over the last 20 years. This paper presents a comparative study of the two sets of measurements and evaluates energy saving efforts and individual building energy performance. Furthermore, the paper compares two different ways of deriving benchmarks from the data and demonstrates how utilizing change-point models/energy signature as opposed to the more traditional mean annual values per heated area, significantly increases the usability.


2020 ◽  
Vol 12 (9) ◽  
pp. 3566
Author(s):  
Byung Chang Kwag ◽  
Sanghee Han ◽  
Gil Tae Kim ◽  
Beobjeon Kim ◽  
Jong Yeob Kim

The purposes of this study were to overview the building-energy policy and regulations in South Korea to achieve energy-efficient multifamily residential buildings and analyze the effects of strengthening the building design requirements on their energy performances. The building energy demand intensity showed a linear relationship with the area-weighted average U-values of the building envelope. However, improving the thermal properties of the building envelope was limited to reducing the building-energy demand intensity. In this study, the effects of various energy conservation measures (ECMs) on the building-energy performance were compared. Among the various ECMs, improving the boiler efficiency was found to be the most efficient measure for reducing the building-energy consumption in comparison to other ECMs, whereas the building envelope showed the least impact, because the current U-values are low. However, in terms of the primary energy consumption, the most efficient ECM was the lighting power density because of the different energy sources used by various ECMs and the different conversion factors used to calculate the primary energy consumption based on the source type. This study showed a direction for updating the building-energy policy and regulations, as well as the potential of implementing ECMs, to improve the energy performances of Korean multifamily residential buildings.


2018 ◽  
Vol 10 (7) ◽  
pp. 2554 ◽  
Author(s):  
Yeweon Kim ◽  
Ki-Hyung Yu

This study presented a methodology and process to establish a passive level for policy making of building energy in South Korea. A passive level in Korea specified in the 2017 Roadmap for non-residential buildings, which was 15 kWh/m2·year, was defined as the heating energy requirement to strengthen the building energy saving design standards, which were typical building energy regulations in Korea. This study also presented insulation standards of roofs, floors, outer walls, and windows in Pyeongchang, Seoul, Gwangju, and Jeju, which were represented cities of four zones in Korea (Middle 1, Middle 2, Southern, and Jeju). Furthermore, the study results were extended to 66 cities around the nation to calculate the heating energy requirements and a severely cold region was added to existing three regions (Middle, Southern, and Jeju) to extend this to four regions (Middle 1, Middle 2, Southern, and Jeju). Afterwards, insulation standards for four represented regions were presented to derive a measure that minimized an energy loss through outer walls or windows in buildings. Finally, this study derived that a return of investment can be achieved in 10 years, which was determined through the comprehensive economic feasibility analysis due to strengthening insulation performances, proving the rationalization of the legal strengthening.


2014 ◽  
Vol 641-642 ◽  
pp. 1037-1039
Author(s):  
Zhi Neng Tong

This paper expounds the importance of wall insulation energy-saving wall insulation materials, introduces the characteristics and process practice requirements. Bring forth the new through the old to accelerate energy-saving technical insulation wall material, plays a positive role in promoting to create a more comfortable living environment, provide the beneficial reference for the wall heat preservation and energy saving. Building energy saving is the main content of environmental protection and energy conservation, is an important part of sustainable development. Residential building energy-saving work unceasingly thorough, continuously improve the energy efficiency standards, the development of many new energy-saving technology, vigorously promote the use of residential buildings. But the current level of building energy saving, but also far lower than developed countries. So the building energy conservation is an important task of building industry. In the construction of the external retaining structure, the heat loss, the supporting structure of the external wall and a big share. Development and reform of building wall and wall energy saving technology is the main content of building energy-saving technology, the development of external insulation materials and energy-saving technology is the main way to achieve energy-saving building. Thermal insulation external wall energy saving is mainly divided into exterior insulation and exterior wall insulation two categories.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3241
Author(s):  
Krzysztof Powała ◽  
Andrzej Obraniak ◽  
Dariusz Heim

The implemented new legal regulations regarding thermal comfort, the energy performance of residential buildings, and proecological requirements require the design of new building materials, the use of which will improve the thermal efficiency of newly built and renovated buildings. Therefore, many companies producing building materials strive to improve the properties of their products by reducing the weight of the materials, increasing their mechanical properties, and improving their insulating properties. Currently, there are solutions in phase-change materials (PCM) production technology, such as microencapsulation, but its application on a large scale is extremely costly. This paper presents a solution to the abovementioned problem through the creation and testing of a composite, i.e., a new mixture of gypsum, paraffin, and polymer, which can be used in the production of plasterboard. The presented solution uses a material (PCM) which improves the thermal properties of the composite by taking advantage of the phase-change phenomenon. The study analyzes the influence of polymer content in the total mass of a composite in relation to its thermal conductivity, volumetric heat capacity, and diffusivity. Based on the results contained in this article, the best solution appears to be a mixture with 0.1% polymer content. It is definitely visible in the tests which use drying, hardening time, and paraffin absorption. It differs slightly from the best result in the thermal conductivity test, while it is comparable in terms of volumetric heat capacity and differs slightly from the best result in the thermal diffusivity test.


2021 ◽  
Vol 13 (4) ◽  
pp. 1595
Author(s):  
Valeria Todeschi ◽  
Roberto Boghetti ◽  
Jérôme H. Kämpf ◽  
Guglielmina Mutani

Building energy-use models and tools can simulate and represent the distribution of energy consumption of buildings located in an urban area. The aim of these models is to simulate the energy performance of buildings at multiple temporal and spatial scales, taking into account both the building shape and the surrounding urban context. This paper investigates existing models by simulating the hourly space heating consumption of residential buildings in an urban environment. Existing bottom-up urban-energy models were applied to the city of Fribourg in order to evaluate the accuracy and flexibility of energy simulations. Two common energy-use models—a machine learning model and a GIS-based engineering model—were compared and evaluated against anonymized monitoring data. The study shows that the simulations were quite precise with an annual mean absolute percentage error of 12.8 and 19.3% for the machine learning and the GIS-based engineering model, respectively, on residential buildings built in different periods of construction. Moreover, a sensitivity analysis using the Morris method was carried out on the GIS-based engineering model in order to assess the impact of input variables on space heating consumption and to identify possible optimization opportunities of the existing model.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1080
Author(s):  
Mamdooh Alwetaishi ◽  
Omrane Benjeddou

The concern regarding local responsive building design has gained more attention globally as of late. This is due to the issue of the rapid increase in energy consumption in buildings for the purpose of heating and cooling. This has become a crucial issue in educational buildings and especially in schools. The major issue in school buildings in Saudi Arabia is that they are a form of prototype school building design (PSBD). As a result, if there is any concern in the design stage and in relation to the selection of building materials, this will spread throughout the region. In addition to that, the design is repeated regardless of the climate variation within the kingdom of Saudi Arabia. This research will focus on the influence of the window to wall ratio on the energy load in various orientations and different climatic regions. The research will use the energy computer tool TAS Environmental Design Solution Limited (EDSL) to calculate the energy load as well as solar gain. During the visit to the sample schools, a globe thermometer will be used to monitor the globe temperature in the classrooms. This research introduces a framework to assist architects and engineers in selecting the proper window to wall ratio (WWR) in each direction within the same building based on adequate natural light with a minimum reliance on energy load. For ultimate WWR for energy performance and daylight, the WWR should range from 20% to 30%, depending on orientation, in order to provide the optimal daylight factor combined with building energy efficiency. This ratio can be slightly greater in higher altitude locations.


Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 94
Author(s):  
Tara L. Cavalline ◽  
Jorge Gallegos ◽  
Reid W. Castrodale ◽  
Charles Freeman ◽  
Jerry Liner ◽  
...  

Due to their porous nature, lightweight aggregates have been shown to exhibit thermal properties that are advantageous when used in building materials such as lightweight concrete, grout, mortar, and concrete masonry units. Limited data exist on the thermal properties of materials that incorporate lightweight aggregate where the pore system has not been altered, and very few studies have been performed to quantify the building energy performance of structures constructed using lightweight building materials in commonly utilized structural and building envelope components. In this study, several lightweight concrete and masonry building materials were tested to determine the thermal properties of the bulk materials, providing more accurate inputs to building energy simulation than have previously been used. These properties were used in EnergyPlus building energy simulation models for several types of commercial structures for which materials containing lightweight aggregates are an alternative commonly considered for economic and aesthetic reasons. In a simple model, use of sand lightweight concrete resulted in prediction of 15–17% heating energy savings and 10% cooling energy savings, while use of all lightweight concrete resulted in prediction of approximately 35–40% heating energy savings and 30% cooling energy savings. In more complex EnergyPlus reference models, results indicated superior thermal performance of lightweight aggregate building materials in 48 of 50 building energy simulations. Predicted energy savings for the five models ranged from 0.2% to 6.4%.


Sign in / Sign up

Export Citation Format

Share Document