Nanostructured Copper Coating Used as Textured Structure for cBN and TiN Hard Phase Deposition

2015 ◽  
Vol 754-755 ◽  
pp. 1136-1140
Author(s):  
Cornel Samoila ◽  
Doru Ursuțiu ◽  
Mihaela Dudită ◽  
Vlad Jinga ◽  
Mohd Mustafa Al Bakri Abdullah

In the case of cutting tools, the temperature of both the cutting tool and the part are decreased during the machining process by the use of cutting fluids, which are expensive, can be toxic and produce a significant waste stream. Coatings for cutting tools can be an effective approach to solve this problem. This paper will present a developed technology by a group of researchers from “Transilvania” University of Brașov, through which the copper`s surface will be nanostructurated at a nanometric scale in such a manner, for creating nodular structures. This technology is simple, easy for implementation, not so expensive and it`s results are proper for cutting tools coatings usage.

2019 ◽  
Vol 813 ◽  
pp. 55-61
Author(s):  
Juan Manuel Vázquez-Martínez ◽  
Irene Del Sol ◽  
Moises Batista ◽  
Severo Raúl Fernández-Vidal ◽  
Pedro M. Hernandez ◽  
...  

Machining process usually involves relevant wear effects on the cutting tool, producing undesirable surface features on the work-pieces. Lubricants and cooling fluids are used with the aim to minimize the wear phenomena as well as high temperatures produced during the cutting processes. However, the use of these fluids may have an adverse environmental impact. For this reason, the reduction of quantity of cutting fluids used in the machining process is a requirement in order to improve the performance and sustainability of the process. For this purpose, this work proposes an increase of the lubricant retention ability for cutting tools based on surface modification. In this research, micro-geometrical features of Carbide (WC-Co) surfaces have been modified by laser texturing techniques. A wide range of roughness topographies had been developed by changing the laser irradiation parameters of energy density of pulse (Ed) and scanning speed of the beam (Vs). Different geometries of the textured tracks (single spots, linear tracks, circular tracks) also were studied. Moreover, through specific roughness features conducted by texturing process, the retention ability of cutting fluids was modified. It was evaluated by the contact angle between liquid and solid phases. This modification allowed to increase the self-lubricant effect of the WC-Co surface. This methodology has been validated on carbide tools under lubricated machining processes. Wear effects on the cutting tool were reduced and the surface finish of the machined parts was remained at least in the same ranges as non-modified tools.


2014 ◽  
Vol 551 ◽  
pp. 221-227
Author(s):  
Zhi Qiang Zhang ◽  
Tie Qiang Gang ◽  
Yi Kai Yi

In this paper, based on finite element simulation software AdvantEdge, the effects of different coating materials and thickness on the wear of cutting tools during the machining process have been studied. For the tools with coating materials of TiAlN, Al2O3, TiN, TiC, we can calculate the wear rate according to the Usui mathematical model of tool wear, and then consider thickness factor of TiC coating. Because of the lowest thermal conductivity, the workpiece cut by TiC coated tool will soften first and more over cutting time, it result in the lowest wear rate. And with the increase of coating thickness, the effect of "thermal barrier" is more obvious for the relatively thicker coating tool, but the relative sliding velocity between the chip and tool is increasing meanwhile, so a suitable coating thickness is necessary.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 623 ◽  
Author(s):  
Dervis Ozkan ◽  
Peter Panjan ◽  
Mustafa Sabri Gok ◽  
Abdullah Cahit Karaoglanli

Carbon fiber-reinforced polymers (CFRPs) have very good mechanical properties, such as extremely high tensile strength/weight ratios, tensile modulus/weight ratios, and high strengths. CFRP composites need to be machined with a suitable cutting tool; otherwise, the machining quality may be reduced, and failures often occur. However, as a result of the high hardness and low thermal conductivity of CFRPs, the cutting tools used in the milling process of these materials complete their lifetime in a short cycle, due to especially abrasive wear and related failure mechanisms. As a result of tool wear, some problems, such as delamination, fiber breakage, uncut fiber and thermal damage, emerge in CFRP composite under working conditions. As one of the main failure mechanisms emerging in the milling of CFRPs, delamination is primarily affected by the cutting tool material and geometry, machining parameters, and the dynamic loads arising during the machining process. Dynamic loads can lead to the breakage and/or wear of cutting tools in the milling of difficult-to-machine CFRPs. The present research was carried out to understand the influence of different machining parameters on tool abrasion, and the work piece damage mechanisms during CFRP milling are experimentally investigated. For this purpose, cutting tests were carried out using a (Physical Vapor Deposition) PVD-coated single layer TiAlN and TiN carbide tool, and the abrasion behavior of the coated tool was investigated under dry machining. To understand the wear process, scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS) was used. As a result of the experiments, it was determined that the hard and abrasive structure of the carbon fibers caused flank wear on TiAlN- and TiN-coated cutting tools. The best machining parameters in terms of the delamination damage of the CFRP composite were obtained at high cutting speeds and low feed rates. It was found that the higher wear values were observed at the TiAlN-coated tool, at the feed rate of 0.05 mm/tooth.


2011 ◽  
Vol 201-203 ◽  
pp. 2597-2600
Author(s):  
Zhan Feng Liu ◽  
Rui Liang Li

Through the analysis for steel of 4145H drill collar, Research into the various factors of cutting, such as the cutting tool material, cutting-tool angle and cutting parameters, combined with the actual structure of the workpiece and the superlong deep-hole processing method for study. In the test, the machining process is analyzed, especially the process of boring and honing. The test result indicates that the trepanning process is stable and reliable to solve the superlong deep hole (Φ71mm×7500mm) of 4145H drill collar steel processing problems of production if the optimizing cutting method is appropriate and the cutting tools and the cutting parameters are rational.


2010 ◽  
Vol 126-128 ◽  
pp. 235-240
Author(s):  
Takahiro Takechi ◽  
Junichi Tamaki ◽  
Akihiko Kubo ◽  
A.M.M. Sharif Ullah

Single-point fly cutting and nanoindentation test of quartz glass were performed using three different cutting tools, namely, a V-shaped cutting tool, a Vickers indenter and a spherical indenter, to investigate the elastic and plastic behaviors of quartz glass in ductile-regime machining. It was found that these behaviors depend on tool shape and that the V-shaped cutting tool is most effective for removing quartz glass material followed by the Vickers indenter and spherical indenter.


2011 ◽  
Vol 340 ◽  
pp. 30-33 ◽  
Author(s):  
Anton Panda ◽  
Ján Duplák ◽  
Jozef Jurko ◽  
Marcel Behún

Very important cutting tool property is its durability. Durability of cutting tool defines lifetime of this cutting tool and it determines its suitability for select technological operation. Technical science defines a lot of different factors, that they may be cause of shorter cutting tool lifetime. For increase cutting tool durability is necessary maximally possible elimination of these factors. Determination of cutting tool durability is very important, because provides comprehensive information how to determine appropriate technological conditions for selected cutting tool. In engineering is for determination of cutting tools durability used T-vc dependence. The article describes process how to create durability dependence for cutting tools made of sintered carbide by means of T-vc dependence in machining process of steel 100CrMn6.


2014 ◽  
Vol 616 ◽  
pp. 292-299
Author(s):  
Ján Duplák ◽  
Peter Michalik ◽  
Miroslav Kormoš ◽  
Slavko Jurko ◽  
Pavel Kokuľa ◽  
...  

Durability of cutting tools represent to a large spectral index on the basis of which is characterized by functional work. Every manufacturer of cutting tools before the actual production of these tools during the development make a tests and prescribing them characteristics on which is possible then to predict their behavior in the actual production process. It might be argued, that these information are optimized and ideal and therefore the information which producers sells by these cutting tools, do not correspond completely with their real behavior. It is necessary that information by using experiments to verify and then review their informative value and correctness. Durability of cutting tools is often indicated for one tested material of marketing aspect, which is machined and effort of user is to achieve this variable for other machined materials, then is happened problem in the production. The problem is very short lifetime of cutting tool in machining process, where the effect is impossibility to optimize the machining process. The results of this action are excesses time caused by exchanged of cutting plate and then it is make a low production of machining industry by setting of machines, and then the factory has an economical loses. This article is focused on tested of cutting tools made by sintered carbide, where the machine material is steel 100CrMn6. This type of steel is used by manufacturer of bearings, therefore the experimental part of this article should be a helper for machining manufactures, which make effectively manage with tools by optimization of cutting parameters of cutting tools and thus increase their productivity and to achieve a higher profits.


2015 ◽  
Vol 669 ◽  
pp. 286-293 ◽  
Author(s):  
Anton Panda ◽  
Ján Duplák ◽  
Miroslav Kormoš ◽  
Juraj Ružbarský

Specification cutting tools durability made of cutting ceramic in machining process of steel 80MoCrV4016 is very important for economics of small and medium-sized enterprises, because cutting tool durability is factor that significantly affects the budget of these enterprises. This problematic is determined for small and medium-sized manufacturers of bearings, because steel 80MoCrV4016 is most commonly used for production of bearings. Durability of cutting tool defines lifetime of this cutting tool and it determines its suitability for select technological operation. Especially for cutting ceramic is necessary to define durability dependence on available set of cutting speeds and to determine lifetime of tools made of cutting ceramic. Technical science defines a lot of different factors, that they may be cause of shorter cutting tool lifetime. For increase cutting tool durability is necessary maximally possible elimination of these factors. Determination of cutting tool durability is very important, because provides comprehensive information how to determine appropriate technological conditions for selected cutting tool. In engineering is for determination of cutting tools durability usedT-vcdependence. The article describes process how to create durability dependence for cutting tools made of cutting ceramic by means ofT-vcdependence in machining process of steel 80MoCrV4016.


2013 ◽  
Vol 308 ◽  
pp. 133-139 ◽  
Author(s):  
Ján Duplák ◽  
Michal Hatala ◽  
Peter Michalik

Durability of cutting tool defines lifetime of this cutting tool and it determines its suitability for select technological operation. Technical science defines a lot of different factors, that they may be cause of shorter cutting tool lifetime. For increase cutting tool durability is necessary maximally possible elimination of these factors. Determination of cutting tool durability is very important, because provides comprehensive information how to determine appropriate technological conditions for selected cutting tool. In engineering is for determination of cutting tools durability used T-vc dependence. Durability of cutting tools is defined in standard ISO 3685. In standard ISO 3685 is defined T-vc dependence for different cutting materials and standard included process evaluation of tool durability for cutting materials made of high speed steel, sintered carbide and cutting ceramic. Specification of cutting tools durability in machining process of steel 16MoV6-3 is very important for economics of small and medium-sized enterprises, because cutting tool durability is factor that significantly affects the budget of these enterprises. Standard ISO 3685 contains instructions how to create T-vc dependence for cutting tools. In this standard are only instructions how to create T-vc dependence according to Mr. Taylor. The article describes process how to create durability dependence for cutting tools made of sintered carbide in machining process of 16MoV6-3 by means of T-vc dependence.


2011 ◽  
Vol 101-102 ◽  
pp. 759-762 ◽  
Author(s):  
Hui Mu ◽  
Ping Yu Jiang ◽  
Qi Qi Zhu

Industrial product service systems (IPSSs) are special product-service packages used to improve productivity and reduce cost in the life cycle of industrial products, where cost estimation plays a very important role in price making and cost optimization. This paper defines an IPSS for cutting tools and discusses its working modes briefly. A machining process level cost estimation scheme is then proposed for the cutting-tool IPSS. An example has been developed to illustrate the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document