Effect of Sintering Temperature on Different Ca Content in Mg-Ca Composite Using Powder Metallurgy Technique

2015 ◽  
Vol 754-755 ◽  
pp. 907-911 ◽  
Author(s):  
M.S. Syaza Nabilla ◽  
C.D. Zuraidawani ◽  
M.N. Derman

Having the benefit of lightweight and low density makes magnesium (Mg) a good element with high potential to be used in various field of work. Yet, its application is limited for Mg is relatively low in term of strength. Hence, calcium (Ca) is chosen to be mixed with Mg as additional element for it is lightweight and non-toxic. In this research, Mg is prepared with different weight percentage (0, 1, 2 wt. %) of Ca via powder metallurgy (PM) method. The effect of sintering was investigated by focusing on the microstructure and properties of sintered sample. The samples were sintered at two sintering temperature (500 and 600 °C) in argon atmosphere. Morphological analysis carried out by optical microscope shows increase pores refinement with the increase of sintering temperature together with calcium content in Mg-Ca composites. Results show that the grain size and hardness of the samples increase as sintering temperature increase.

2015 ◽  
Vol 819 ◽  
pp. 309-313 ◽  
Author(s):  
M.S. Syaza Nabilla ◽  
C.D. Zuraidawani ◽  
M.N. Derman

Magnesium (Mg) has a great potential to be used in various field of work since it is lightweight and has low density properties. However, its application is limited due to its poor properties for Mg has a relatively low strength. Improvement is made by mixing Mg with calcium (Ca) as composite element for it is lightweight and non-toxic. In this research, Mg is prepared with different weight percentage (0, 0.5, 1, 1.5, 2 wt. %) of Ca with pure Mg as reference prepared by powder metallurgy (PM) method to study the mechanical properties. Morphological analysis carried out by optical microscope shows increase grain refinement with the increase of calcium content in Mg-Ca composites. The phase transition upon addition of Ca is determined using XRD method detects formation of Mg2Ca. Range from 1.78 g/cm3to 1.83 g/cm3, the density of each sample composite increase. While porosity profiles show inverse characteristics upon addition of Ca. Microhardness strengths also intensifies up to 193.20 MPa as more Ca content added in.


2016 ◽  
Vol 857 ◽  
pp. 242-245
Author(s):  
Mohd Tajuddin Mohd Tajuddin ◽  
Shamsul Baharin Jamaludin

PM Co-Cr-Mo (F75) alloys are widely used in implants due to their mechanical properties, good wear resistance and as well as biocompatibility. Currently, they are fabricated by casting technique. In this present research, F75 was fabricated by powder metallurgy technique. The powder was mixed with 2 wt. % of stearic acid in order to form green body and compacted at 500 MPa. The effect of sintering temperature was investigated to observe its effect to the microstructure of F75 (Co-Cr-Mo). Samples were sintered for 2 hours at 2 different temperatures (1250°C and 1300°C) with 10°C/min in argon atmosphere. Physical properties such as density and porosity were obtained by Archimedes principle. Microstructure was observed by using optical microscope Olympus BX41M. The results indicate that increasing the sintering temperature will influence the density and porosity, thus the microstructure itself.


2013 ◽  
Vol 465-466 ◽  
pp. 886-890
Author(s):  
Adibah Amir ◽  
Othman Mamat

Tronohs raw sand was converted into fine silica particles via a series of milling process. Addition of these fine particles into iron composite was found to modify its mechanical properties. The composite was prepared using powder metallurgy technique with varying percentage of silica particles; 5, 10, 15, 20 and 25wt%. The composites were sintered at three different temperatures; 1000° C, 1100° C and 1200° C to find the most suitable sintering temperature. Changes in density and hardness were observed. The results showed that composite consist of 20wt% silica particles and sintered at 1100° C exhibits best improvement.


Author(s):  
Dewan Muhammad Nuruzzaman ◽  
Farah Fazira Kamaruzaman ◽  
Nasrah Mohd Azmi

In this study, aluminium-aluminium oxide (Al-Al2O3) metal matrix composites of different weight percentage reinforcements of aluminium oxide were processed at different sintering temperatures. In order to prepare these composite specimens, conventional powder metallurgy (PM) method was used. Three types specimens of different compositions such as 95%Al+5%Al2O3, 90%Al+10%Al2O3 and 85%Al+15%Al2O3 were prepared under 20 Ton compaction load. Then, all the specimens were sintered in a furnace at two different temperatures 550oC and 580oC. In each sintering process, two different heating cycles were used. After the sintering process, it was observed that undistorted flat specimens were successfully prepared for all the compositions. The effects of sintering temperature and weight fraction of aluminium oxide particulates on the density, hardness and microstructure of Al-Al2O3 composites were observed. It was found that density and hardness of the composite specimens were significantly influenced by sintering temperature and percentage aluminium oxide reinforcement. Furthermore, optical microscopy revealed that almost uniform distribution of aluminium oxide reinforcement within the aluminium matrix was achieved.


2015 ◽  
Vol 723 ◽  
pp. 475-480 ◽  
Author(s):  
Yong Ping Jin ◽  
Bin Guo

It is a difficult problem how to obtain the density of powder metallurgy products. Sintering billets had been prepared by mechanical milled graphite/copper compound powders firstly. Their microstructures had been analyzed by such means as scanning electron microscope (SEM) and optical microscope. Influence of technological parameters on relative density had also been investigated. The results show that sintering of non-milled powders are intensely affected by sintering temperature, contrary to mechanical milled compound powders. Hot pressed sintering under vacuum can promote densification effectively. By prolonging time, elevating temperature or pressure of hot pressed sintering, relative density of sintering billets can be increased accordingly. Under the same conditions, relative density decreases with mechanical milling time of compound powders.


2015 ◽  
Vol 754-755 ◽  
pp. 698-702 ◽  
Author(s):  
Romisuhani Ahmad ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Kamarudin Hussin ◽  
Andrei Victor Sandu ◽  
Mohammed Binhussain ◽  
...  

Geopolymer ceramic have been produced by the powder metallurgy (PM) technique. The samples were reacted by the alkaline activator to activate the geopolymerization process and crushed by using Mortar and Pestle to powderized the samples. Powder metallurgy technique was used and samples were heated at different temperature start from 700 °C until 1200°C and the strength were tested. The relative density and flexural strength of sintered sample ranged approximately 84%-95% and 20-100 MPa respectively. Microstructural properties was conducted by scanning electron microscopic (SEM) and the surface analysis by energy dispersive X-ray (EDX).


2021 ◽  
Vol 18 (23) ◽  
pp. 683
Author(s):  
Bappi Sarker ◽  
Md. Arafat Rahman ◽  
Md. Mizanur Rahman ◽  
Md. Saiful Islam

Despite the importance of Nickel Oxide (NiO) in diverse functional applications, very little information is available on the mechanical properties of bulk or porous NiO or, mostly unnoticed. In this study, porous Ni-NiO foam was synthesized using space holding-powder metallurgy and sintering methods to produce opened-cell structure with macrogravel and Neolamarckia cadamba (Cadamba flower) like surface morphology. Four different types of porous Ni-NiO with different pore diameter of 35.65 ± 12.77, 36.10 ± 8.85, 68.20 ±7.36 and 62.45 ± 17.48 µm were fabricated for evaluating the effect of porosity on the mechanical properties of bulk porous Ni-NiO foam. The mechanical properties such as bulk crushing force of as synthesized Ni-NiO foam with various porosities such as 20.55, 27.35, 27.85 and 28.82 % exhibited the average crushing load of 115.40, 39.95, 138.10 and 151.20 N, respectively. This study suggests that crushing load of Ni-NiO foam is not only depending on the porosity but also on the sintering temperature and crystallite sizes of NiO. HIGHLIGHTS Ni-NiO foam is synthesized using space holding-powder metallurgy and sintering methods Different pore diameter is fabricated for evaluating the effect of porosity on the mechanical properties of bulk porous Ni-NiO foam Crushing strength of Ni-NiO foam is not only depending on the porosity but also on the sintering temperature and crystallite sizes of NiO GRAPHICAL ABSTRACT


2011 ◽  
Vol 410 ◽  
pp. 216-219 ◽  
Author(s):  
S. Mahathanabodee ◽  
Tippaban Palathai ◽  
S. Raadnui ◽  
Ruangdaj Tongsri ◽  
Narongrit Sombatsompop

In this work, the three compositions of hexagonal boron nitride (10, 15 and 20 vol. %)-embedded 316L stainless steel (SS316L/h-BN) composites were prepared by a conventional powder metallurgy technique and then sintered at varying temperatures of 1100 to 1250°C for 60 min in H2 atmosphere. The h-BN content and sintering temperature were found to affect the microstructure and hardness of the composites. The hardness decreased with increasing h-BN content and was improved by increasing the sintering temperature. Microstructure results revealed that the boride phase was formed at the grain boundary at the sintering temperature higher than 1150°C and the boride phase formation was observed to transform the h-BN in the composites.


Sign in / Sign up

Export Citation Format

Share Document