Robust Optimization of the Deep Drilling Process by Taguchi Method

2015 ◽  
Vol 760 ◽  
pp. 403-408
Author(s):  
Laurentiu Aurel Mihail

The paper presents an optimization by using the robust engineering approach, for the optimization of the deep drilling process by assessing the surface roughness by the Ra parameter. The trials were developed according with the Robust Engineering principles, by applying the Taguchi Method. The parameter for decision is the average profile height (Ra) of the roughness. Finally, there are presented solutions for the setting-up the deep drilling parameters levels in such a way to assure the best quality at the level of the generated surface. The method results to be reliable for being applied for achieving the optimal setup machining parameters used for the deep drilling process.

2019 ◽  
Vol 23 (1) ◽  
pp. 271-276
Author(s):  
T. Deepan Bharathi Kannan ◽  
B. Suresh Kumar ◽  
G. Rajesh Kannan ◽  
M. Umar ◽  
Mohammad Chand Khan

Abstract This work is aimed at developing relations between the pertinent variables that affect drilling process of stainless steel using artificial neural network. The experiments were conducted on vertical CNC machining centre. The parameters used were spindle speed and feed rate. The effect of machining parameters on entry burr height, exit burr height and surface roughness was experimentally evaluated for different spindle speeds and feed rates. A model was established between the drilling parameters and experimentally obtained data using ANN. The predicted values and measured values are fairly close, which indicates that the developed model can be effectively used to predict the burr height and surface roughness in drilling of stainless steel. Genetic algorithm (GA) technique was used in this work to identify the optimized drilling parameters. Confirmation test was conducted with the optimized parameters and it was found that confirmation test results were similar to that of GA-predicted output values.


2012 ◽  
Vol 710 ◽  
pp. 353-358
Author(s):  
K. Vinoth Babu ◽  
J.T. Winowlin Jappes ◽  
T.P.D. Rajan

The present investigation is on the fabrication of SiC particles reinforced aluminum functionally graded disc and optimization of drilling process parameters using Taguchi method. The primary processing of A356-20%SiCpcomposite have been carried out by liquid metal stir casting technique followed by centrifugal casting leading to the formation of a functionally graded Al FGM disc with SiC particles segregating towards the outer periphery of the casting. The composite specimens are heat treated and used for the drilling studies. Taguchi method has been used to find the optimal drilling parameters for surface roughness and thrust force during drilling. The Taguchi Orthogonal arrays, signal-to-noise ratio (S/N) and Analysis of variance (ANOVA) are employed to study the performance characteristics in drilling operations of FGMMC using TiAlN coated carbide tools. The drilling parameters like cutting speed, feed and point angle in three different zones (15, 45, and 75 mm from the outer periphery) of FGMMC are optimized with considerations of surface roughness and thrust force.


Author(s):  
Menderes Kam ◽  
Mustafa Demirtaş

This study analyzed the tool vibration (Vib) and surface roughness (Ra) during turning of AISI 4340 (34CrNiMo6) tempered steel samples using Taguchi Method. In this context, Taguchi design L18 (21 × 32) was used to analyze the experimental results. The vibration amplitude values from cutting tools were recorded for different machining parameters, control factors; two different sample hardness (46 and 53 HRc), three different cutting speeds (180, 220, 260 m.min−1), and feed rates (0.08, 0.14, 0.20 mm.rev−1) were selected. The machining parameters giving optimum Vib and Ra values were determined. Regression analysis is applied to predict values of Vib and Ra. Analysis of variance was used to determine the effects of machining parameters on the Vib and Ra values. The most important machining parameters were found to be the feed rate, sample hardness, and cutting speed for Vib and Ra, respectively. The lowest Vib and Ra values were obtained in 46 HRc sample as 0.0022 gRMS and 0.255 µm, respectively. The surface quality can be improved by reducing the sources of vibration by using appropriate machining parameters. As a result, there is a significant relationship between Ra and Vib. The lower Ra values were found during turning process of tempered steel samples according to the literature studies. It is suggested that the process can be preferred as an alternative process to grinding process due to lower cost and machining time. In application of the turning of experiment samples by ceramic cutting tool, a substantial technological and economical benefit has been observed.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 10
Author(s):  
A VS Ram Prasad ◽  
Koona Ramji ◽  
B Raghu Kumar

Machining of Titanium alloys is difficult due to their chemical and physical properties namely excellent strength, chemical reactivity and low thermal conductivity. Traditional machining of such materials leads to formation of continuous chips and tool bits are subjected to chatter which leads to formation of poor surface on machined surface. In this study, Wire-EDM one of the most popular unconventional machining process which was used to machine such difficult-to-cut materials. Effect of Wire-EDM process parameters namely peak current, pulse-on- time, pulse-off-time, servo voltage on MRRand SR was investigated by Taguchi method. 0.25 mm brass wire was used in this process as electrode material. A surface roughness tester (Surftest 301) was used to measure surface roughness value of the machined work surface. A multi-response optimization technique was then utilized to optimize Wire-EDM process parameters for achieving maximum MRR and minimum SR simultaneously.


2020 ◽  
Vol 10 (3) ◽  
pp. 824
Author(s):  
Imran Mohsin ◽  
Kai He ◽  
Zheng Li ◽  
Feifei Zhang ◽  
Ruxu Du

Surface finishing and polishing are important quality assurance processes in many manufacturing industries. A polished surface (low surface roughness) is linked with many useful properties other than providing an appealing gloss to the product, such as surface friction, electrical and chemical resistance, thermal conductivity, reflection, and product life. All these properties require an efficient polishing system working with the best machining parameters. This study analyzed the effects of the different input polishing parameters on the polishing efficiency and torque in the robotic polishing system for the circular-shaped workpieces (such as ring, cylinder, sphere, cone, etc.) by using the Taguchi method and analysis of variance (ANOVA). A customized rotatory passive gripper is designed to hold the watch bezel during polishing. Under the design of experiments (DOE) technique, Taguchi’s L 18 array is selected to find the optimized process parameters for polishing efficiency (based on surface roughness) and torque. Experimental results with the statistical analysis by signal-to-noise ratio and ANOVA (95% confidence level) confirms that the polishing force and tool speed are the most influencing parameter for polishing efficiency in the system. Linear regression equations are modeled for the polishing efficiency and torque. Finally, a confirmation test is conducted for the validation of the experimentation results against actual results.


2015 ◽  
Vol 14 (04) ◽  
pp. 259-272 ◽  
Author(s):  
L. Selvarajan ◽  
C. Sathiya Narayanan ◽  
R. Jeyapaul

Intermetallic/ceramic composites with multiple responses are based on L18 orthogonal array with gray relational analysis (GRA). This paper presents a new approach for the optimization of drilling parameters on drilling MoSi 2– SiC composites. Optimal machining parameters can then be determined by the gray relational grade as the performance index. In this study, the sparking parameters namely current (I), pulse on time (t on ), pulse off time (t off ), spark gap and dielectric flushing pressure (P) are optimized with considerations of multiple performance characteristics including multi responses such as material removal rate (MRR), electrode wear rate (EWR), circularity (CIR), cylindricity (CYL), perpendicularity (PER). A gray relational grade obtained from the GRA is used to solve the electrical discharge machining (EDM) process with the multiple performance characteristics. Based on the gray relational grade, optimum levels of parameters have been identified and significant contribution of parameters is determined by ANOVA. Confirmation test is conducted to validate the test result. Experimental results have shown that the responses in EDM drilling process can be improved effectively through the new approach.


2019 ◽  
Vol 52 (9-10) ◽  
pp. 1272-1281 ◽  
Author(s):  
Duc Nam Nguyen ◽  
Ngoc Le Chau ◽  
Thanh-Phong Dao ◽  
Chander Prakash ◽  
Sunpreet Singh

The surface quality and accuracy of the geometry of the cylindrical rollers are important factors for bearing life. This paper presents effects of machining parameters on the surface roughness, topography and roundness of cylindrical rollers through the lapping and polishing experiments. And then the surface roughness of the cylindrical rollers is optimized. The results found that the surface roughness of rollers is significantly changed in lapping process with different abrasive particle sizes, while the surface roughness has slightly reduced in polishing process. It also indicated that the smoother surfaces with better roughness can be obtained after lapping and polishing process. In addition, the surface roughness of cylindrical rollers is rapidly reduced from Ra of 0.5 µm to Ra of 0.063 µm after the 3-h lapping process and Ra of 0.013 µm after the 1-h polishing process. The surface topography of rollers can be achieved by the smoother surface when loads are from 25 to 35 N in lapping process, and the loads are from 35 to 40 N in polishing process. Finally, the Taguchi method is applied to optimize the surface roughness in polishing process. The result found that the optimal surface roughness achieves 0.015 µm with respect to the time of 35 min and type of 4000# Al2O3.


Sign in / Sign up

Export Citation Format

Share Document