Wear Behaviour of Cryogenic Treated Recycled Carbon Fibers Filled Epoxy Composite

2015 ◽  
Vol 761 ◽  
pp. 489-493 ◽  
Author(s):  
Mei Lin Law ◽  
Qumrul Ahsan ◽  
Hairul Effendy Ab Maulod ◽  
Noraiham Mohamad ◽  
Sivaraos

Mechanically ground recycled carbon fibers (rCFs) reinforced polymer composites were investigated in this paper. The rCFs were collected from the woven prepreg waste. The as-received (rCFs-AR) and cyclic cryogenic treated (rCFs-T) carbon fibers were incorporated separately in the epoxy matrix composite. The objective of this study is to study the wear behaviour of the epoxy composites with respect to the as-received and treated rCFs. Prior to the composite fabrication, the surface morphologies of rCFs-AR and rCFs-T were examined with the scanning electron microscope (SEM). It is found that the cryogenic treatment is effective in removing the epoxy resin from the carbon fiber due to the mismatches in the thermal expansion at the interface of rCFs and epoxy. The rCFs-AR and rCFs-T were homogeneously distributed in epoxy resin through ultrasonication. The void-free samples were then fabricated using vacuum casting technique. Micro Pin-on-disc Tribotester (CM-9109) was used to test the tribological behaviour of the polymer composites. The coefficient of friction (CoF) and wear rate of epoxy composites revealed that the reinforcement effect of rCFs-T is better than that of the rCFs-AR as the incorporation of rCFs-T decreases the CoF and improves the wear resistance of epoxy composites in comparison with rCFs-AR. The tribological results clearly showed that the rCFs was a valuable product worth to be reused as reinforcement in the new composite, as the incorporation of treated rCFs was effective in improving the tribological properties of the epoxy composites.

Author(s):  
J. Quintelier ◽  
P. Samyn ◽  
P. De Baets ◽  
J. Degrieck

On a Pin-on-Disc test rig with composite disc and steel pin tribological experiments were done on pultruded glass fiber reinforced polymer matrix composites plates. The wear and frictional behavior strongly depends on the structure. Also the normal load plays an important role in the frictional behavior, which is of greater importance than the speed. The formation of a thin polymer film onto the wear track results in a lowering of the coefficient of friction with 20%.


2007 ◽  
Vol 353-358 ◽  
pp. 898-901 ◽  
Author(s):  
Xue Tong Sun ◽  
Cheng Xin Lin

In the present work, the wear behaviour of coatings produced on Ti-6Al-4V alloy by micro-arc oxidation method was studied. The wear tests were performed using a pin-on-disc wear machine under dry sliding conditions. It is found that the MAO coating can efficiently improve the wear-resistant performance of Ti alloy in the test range of this paper. The coated samples demonstrated wear rates up to 5-12 times lower than that of the uncoated substrates tested. The wear behaviours are deeply characterized by the variations of coating structure and composition.


2020 ◽  
Vol 992 ◽  
pp. 745-750
Author(s):  
A.P. Vasilev ◽  
T.S. Struchkova ◽  
A.G. Alekseev

This paper presents the results from the investigation of effect the carbon fibers with tungsten disulfide on the mechanical and tribological properties of PTFE. Is carried out a comparison of mechanical and tribological properties of polymer composites PTFE-based with carbon fibers and PTFE with complex filler (carbon fibers with tungsten disulfide). It is shown that at a content of 8 wt.% CF+1 wt.% WS2 in PTFE, wear resistance increases significantly while maintaining the tensile strength, relative elongation at break and low coefficient of friction at the level of initial PTFE. The results of X-ray analysis and investigation of SEM supramolecular structure and friction surfaces of PTFE and polymer composites are presented. It is shown that the degree of crystallinity of polymer composites increases in comparison with the initial PTFE. The images of scanning electron microscope reveal that particles of tungsten disulfide concentrating on the friction surface is likely responsible to a reduction in the coefficient of friction and increase the wear resistance of PTFE-based polymer composites with complex fillers.


Author(s):  
Subhrajit Pradhan ◽  
Ved Prakash ◽  
Samir Kumar Acharya

The environmental concerns and quest for a sustainable future have encouraged the utilisation of bio-waste in a productive manner. In the present investigation, characterization studies such EDS, XRD and FTIR of pistacia vera (pistachio) nut shell particulates were carried out to have a knowledge of the morphological properties. Further, an attempt was made to utilise the bio-waste i.e. pistacia vera nut shell as a reinforcing phase in epoxy based polymer composites to assess the tribological behaviour of the fabricated composites. The pistachio shell particulate was incorporated with epoxy resin in different weight fractions (0, 10, 20 and 30%) to develop a new class of composite. The effect of filler content, normal load, sliding velocity and sliding distance on the two body abrasive wear behaviour of pistachio shell particulate reinforced epoxy composites was studied. The obtained results showed significant enhancement of abrasion resistance of the fabricated composites as compared to neat epoxy. Further, it was found that the composites with 20 weight percent of filler provide optimum abrasion resistance to the developed composite. The worn out surfaces of the composites were analysed using Scanning Electron Microscope to determine various failure mechanisms leading to deformation of the composite surface.


Author(s):  
Róbert Bidulský ◽  
Jana Bidulská ◽  
Freddy Arenas ◽  
Marco Actis Grande

AbstractThe present paper deals with the tribological behaviour of the boride and carbide hardmetals evaluated by performing comparative dry sliding pin-on-disc experiments using normal contact loads. Analyses of the wear performance results, microstructural evaluation and processing conditions effect indicate that microstructure inhomogenities play an important role in abrasive wear behaviour of cermets. In term of grain size and chemical composition, the addition of VC also play an important role in increasing the wear resistance.


2013 ◽  
Vol 371 ◽  
pp. 343-347
Author(s):  
Radu Caliman

Thanks to their low density, good thermal, mechanical and tribological properties, composites made of carbon fibres and epoxy are particularly adapted to the manufacturing of aircraft brake discs. Several methods have been developed to improve their performance. The purpose of the present study was to evaluate the influence of different epoxy/carbon fibers ratio enhance modification on the friction behaviour and to identify the related mechanisms. Nine different hybrid matrix composites were elaborated. These samples were submitted to structural and mechanical characterization, then to friction and wear tests using a pin-on-disc tribometer, at ambient temperature and humidity, constant rotating speed, varying the loading pressure. As the content of carbon fiber increased, the wear rate of the composites trended to increase. Under the friction condition of high applied load, the friction coefficient inclined to decrease while wear rate increased. When slided under a relatively high load of 12 daN, the wear resistance behaved was better as the content of carbon fiber increased. The aim of the present study was to understand the friction mechanisms of these composites, dealing with the effects of varying the carbon fiber concentration within the matrix, not only on the tribological behaviour but also on the superficial mechanical properties.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
M. Sudheer ◽  
Ravikantha Prabhu ◽  
K. Raju ◽  
Thirumaleshwara Bhat

This study evaluates the influence of independent parameters such as sliding velocity (A), normal load (B), filler content (C), and sliding distance (D) on wear performance of potassium-titanate-whiskers (PTW) reinforced epoxy composites using a statistical approach. The PTW were reinforced in epoxy resin to prepare whisker reinforced composites of different compositions using vacuum-assisted casting technique. Dry sliding wear tests were conducted using a standard pin on disc test setup following a well planned experimental schedule based on Taguchi’s orthogonal arrays. With the signal-to-noise (S/N) ratio and analysis of variance (ANOVA) optimal combination of parameters to minimize the wear rate was determined. It was found that inclusion of PTW has greatly improved the wear resistance property of the composites. Normal load was found to be the most significant factor affecting the wear rate followed by (C), (D), and (A). Interaction effects of various control parameters were less significant on wear rate of composites.


2017 ◽  
Vol 14 (3) ◽  
pp. 188-192
Author(s):  
Suraj R. ◽  
Jithish K.S.

Purpose This paper aims to present a comparative study of the wear properties of ferrous welded materials like EN8, EN9 and mild steel (MS). Design/methodology/approach The material is cut into specific dimension after hardfacing and is studied for the wear properties of the material. The wear testing is done on a pin-on-disc apparatus. The microhardness of the material is studied using the Vickers microhardness measuring apparatus. Findings The wear properties of ferrous welded materials like EN8, EN9 and MS are studied. It is found the MS has the least wear when compared to EN8 and EN9. The microhardness of MS is higher than EN8 and EN9, thus making it more wear-resistant than EN8 and EN9. The coefficient of friction in the dry sliding condition is found to be constant throughout the experiment. Research limitations/implications Major restriction is the amount of time required for use-wear analysis and replication experiments that are necessary to produce reliable results. These limitations mean that the analysis of total assemblages with the intention of producing specific results, especially of worked materials, is not feasible. Practical implications Generally, the complexity and rigour of the analysis depend primarily on the engineering needs and secondarily on the wear situation. It has been the author’s experience that simple and basic wear analyses, conducted in the proper manner, are often adequate in many engineering situations. Integral and fundamental to the wear analysis approach is the treatment of wear and wear behaviour as a system property. As a consequence, wear analysis is not limited to the evaluation of the effects of materials on wear behaviour. Wear analysis often enables the identification of nonmaterial solutions or nonmaterial elements in a solution to wear problems. For example, changes in or recommendations for contact geometry, roughness, tolerance and so on are often the results of a wear analysis. Originality/value The value of the work lies in the utility of the results obtained to researchers and users of the EN8, EN9 and EN24 material for their components.


2020 ◽  
Vol 8 (6) ◽  
pp. 5810-5814

Titanium and Titanium alloys are widely used for aircraft as a material having light weight, high strength and corrosion resistance. The titanium and its alloys are compatible with carbon fibre reinforced plastic components with respect to corrosion and thermal behaviour. Response of Titanium grade 2 and grade 12 at different speed during sliding is to be studied. The literature survey shows inadequate studies on wear response of these alloys. Experiments using pin on disc test rigs were conducted. Speed level of 500rpm, 1000rpm, and 1500 rpm were used. The sliding was found to be sensitive to sliding speed. As speed increases from 500 rpm to 1000 rpm the coefficient of friction increased. At speed of 1500 rpm two steady phase of sliding identified. In one of the steady phase the coefficient of friction was found to be more than the coefficient of friction at 1000 rpm. Where in another steady phase of sliding the coefficient of friction was found to be comparable or less then the coefficient of friction at 1000 rpm


Author(s):  
Shivanna Shivanna ◽  
Sameer S Kulkarni ◽  
Samarth C ◽  
Sagar R ◽  
Sanil K R

Metal matrix composite (MMC’s) are very much familiar in the field like automobile and aerospace industries owing to their excellent wear and mechanical properties . The fundamental aim of this paper is to augment cognizance amongst the researchers and to attract their consideration towards the present approach to treat with the cryogenic usage for the nonferrous metals. In this writing it is endeavor to deliver the examination findings of character of cryogenic usage on Wear Properties of Al356-ZrSiO4 Particulate Reinforced metal matrix Composites adapted by Stir Casting technique. The amount of reinforcement is changed from 0 to 12wt% in track of 3 %. The ready composites are exposed to wear testing as per ASTM standards using pin on disc machine .The hardness of the composites was found to augment with augment in reinforcement in the composite. The inference obtained discloses that as reinforcement content in the composites increment and execution of cryogenic usage to composite amended the wear resistance.


Sign in / Sign up

Export Citation Format

Share Document