Bio waste (Pistacia vera nut shell) filled polymer composites for tribological applications

Author(s):  
Subhrajit Pradhan ◽  
Ved Prakash ◽  
Samir Kumar Acharya

The environmental concerns and quest for a sustainable future have encouraged the utilisation of bio-waste in a productive manner. In the present investigation, characterization studies such EDS, XRD and FTIR of pistacia vera (pistachio) nut shell particulates were carried out to have a knowledge of the morphological properties. Further, an attempt was made to utilise the bio-waste i.e. pistacia vera nut shell as a reinforcing phase in epoxy based polymer composites to assess the tribological behaviour of the fabricated composites. The pistachio shell particulate was incorporated with epoxy resin in different weight fractions (0, 10, 20 and 30%) to develop a new class of composite. The effect of filler content, normal load, sliding velocity and sliding distance on the two body abrasive wear behaviour of pistachio shell particulate reinforced epoxy composites was studied. The obtained results showed significant enhancement of abrasion resistance of the fabricated composites as compared to neat epoxy. Further, it was found that the composites with 20 weight percent of filler provide optimum abrasion resistance to the developed composite. The worn out surfaces of the composites were analysed using Scanning Electron Microscope to determine various failure mechanisms leading to deformation of the composite surface.

2016 ◽  
Vol 1137 ◽  
pp. 24-38
Author(s):  
Jasmaninder Singh Grewal ◽  
Buta Singh Sidhu ◽  
Satya Prakash

In the present work TiAlN coatings were deposited by plasma spray process as titanium aluminium based nitride (Ti, Al)N coatings possess excellent tribological behaviour with respect to metal cutting and polymer forming contacts. Three coatings of TiAlN were deposited on AISI-304 grade boiler steel substrate out of which two were thin nanocoatings deposited at different temperatures of 500°C and 200°C and one conventional coating was deposited by plasma spraying. The as sprayed coatings were characterized with relative to coating thickness, microhardness, porosity and microstructure. The optical microscopy (OM), the XRD analysis and field mission scanning electron microscope (FESEM with EDAX attachment) techniques have been used to identify various phases formed after coating deposited on the surface of the substrate. Subsequently the sliding wear behaviour of uncoated, PVD sprayed nanostructured thin TiAlN coatings deposited at 500°C and 200°C and plasma sprayed conventional coated AISI-304 grade boiler steel were investigated according to ASTM standard G99-03 using pin on disk wear test rig. Cumulative wear volume loss and coefficient of friction, μ were calculated for the coated as well as uncoated specimens for 0.5, 1 and 2 m/sec sliding velocities at a constant normal load of 10 N. The worn out samples were analysed with SEM/EDAX. Wear rates in terms of volumetric loss (mm3/g) for uncoated and coated alloys were compared. The nanostructured TiAlN coatings deposited at 500°C and 200°C has shown minimum wear rate as compared to conventional TiAlN coating and uncoated AISI-304 grade boiler steel. Nanostructured TiAlN coatings were found to be successful in retaining surface contact with the substrate after the wear tests.


Author(s):  
J. Palmers ◽  
K. Vanhollebeke ◽  
J. P. Celis ◽  
T. Van der Donck

The aim of this study was the investigation of the fretting wear of industrial and newly developed multi-layered coatings. The tribological behaviour of flat DLC coated specimens was investigated in fretting mode I and fretting mode II against different ball counterbodies namely, corundum, 100Cr6, and DLC coated 100Cr6 using a broad range of strokes, frequencies, and loads. From Fretting I a dependency of the wear behaviour with the type of DLC coating, and an influence of the normal load with the coefficient of friction was observed. Using Fretting mode II, an attempt was made to study the fatigue and toughness properties of the coatings.


2015 ◽  
Vol 761 ◽  
pp. 489-493 ◽  
Author(s):  
Mei Lin Law ◽  
Qumrul Ahsan ◽  
Hairul Effendy Ab Maulod ◽  
Noraiham Mohamad ◽  
Sivaraos

Mechanically ground recycled carbon fibers (rCFs) reinforced polymer composites were investigated in this paper. The rCFs were collected from the woven prepreg waste. The as-received (rCFs-AR) and cyclic cryogenic treated (rCFs-T) carbon fibers were incorporated separately in the epoxy matrix composite. The objective of this study is to study the wear behaviour of the epoxy composites with respect to the as-received and treated rCFs. Prior to the composite fabrication, the surface morphologies of rCFs-AR and rCFs-T were examined with the scanning electron microscope (SEM). It is found that the cryogenic treatment is effective in removing the epoxy resin from the carbon fiber due to the mismatches in the thermal expansion at the interface of rCFs and epoxy. The rCFs-AR and rCFs-T were homogeneously distributed in epoxy resin through ultrasonication. The void-free samples were then fabricated using vacuum casting technique. Micro Pin-on-disc Tribotester (CM-9109) was used to test the tribological behaviour of the polymer composites. The coefficient of friction (CoF) and wear rate of epoxy composites revealed that the reinforcement effect of rCFs-T is better than that of the rCFs-AR as the incorporation of rCFs-T decreases the CoF and improves the wear resistance of epoxy composites in comparison with rCFs-AR. The tribological results clearly showed that the rCFs was a valuable product worth to be reused as reinforcement in the new composite, as the incorporation of treated rCFs was effective in improving the tribological properties of the epoxy composites.


Carbon nanotube (CNT) reinforced aluminium (Al) nano-composites were produced using powder metallurgy route with different weight percent of CNT in to the Al matrix. The wear behaviour of CNT-Al nano-composite was studied using a pin-on-disc tribometer against AISI4340 steel disc. Experiments were conducted using different sliding velocities of 0.5, 0.65 and 0.8 m/s and a normal load of 5, 7.5 and 10 N. Design Expert (DOE) version 6.0.8 was used to optimize the process variable for wear and friction test of the developed CNT-Al nano-composite using face centered central composite design based on response surface methodology and confirmed that 1.5 wt% was the optimum CNT-Al nano-composite formulations. The result showed that higher hardness value of the material showed a lesser wear rate and better wear resistance. The result showed that the wear rate of the developed nano-composite decreased with the increasing of CNT content but up to 1.5 wt% CNT into the nano-composite. The wear rate values varied from 2-0.6 x10-3 mm3/m (2, 0.2, 0.17. 0.3 and 0.6 mm3/m x10-3 for 0 wt%, 1 wt%, 1.5 wt%, 2 wt% and 2.5 wt% CNT respectively). These results also showed that the rate of wear decreases with the increase in normal load and sliding speed. DOE confirm the accuracy of the experimental result for the evaluation of the developed CNT-Al nano-composite. Keywords: Wear testing, Sliding wear, Wear modelling, Metal-matrix composite and CNTAl nano-composite


Author(s):  
M. Schmitt ◽  
S. Bistac

With its excellent mechanical and chemical properties, diamond is expected to find many applications in industrial and engineering fields, and more particularly for the machining process, where the use of diamond coated tools leads to an improvement of their efficiency as well as an increase of the tools lifetime. A better understanding of the tribological behaviour of diamond coatings represents then a considerable stake. Intrinsic characteristics like the crystals orientation or the coatings thickness, have a great influence on the tribological properties of this kind of films. But the way the diamond coatings are used also plays an important part on their friction and wear behaviour: the nature of the counterface, the environment, or the variations of the applied normal load induce modifications of the physico-chemical properties of these coatings. The aim of this work is to study the influence of one of these experimental parameters, on the diamond tribological behaviour: the surrounding temperature. Friction tests were then realised at various temperatures with the diamond (obtained by flame process)/HSS couple, under different normal loads. It was shown that the diamond coatings and the discs tracks were significantly modified when increasing the temperature; both the friction mechanisms and the transfer were greatly dependent on the temperature of the environment. The sliding surfaces of the diamond coating and of the HSS disc were observed by Scanning Electron Microscopy and analysed by Energy Dispersive Spectroscopy and Raman spectroscopy to study the sight and the composition of the transferred layer as well as of the friction areas.


Author(s):  
Azeez Lawan Rominiyi ◽  
Mxolisi Brendon Shongwe ◽  
Samson Olaitan Jeje ◽  
Peter Apata Olubambi

The conventional method of producing titanium components introduces defects into the matrix of the materials, thus resulting in poor microstructure, tribological properties and performance of the materials in service. To overcome these challenges, a Ti-Ni-TiCN nanocomposite was developed using the novel spark plasma sintering (SPS) technique. The morphology and the phases present in the initial powders and the sintered specimen were investigated using the scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The dry sliding wear behaviour of the sintered samples was studied at ambient temperature by ball-on-disc tests, under an applied normal load of 25 N. The presence of unreacted TiCN, in-situ formed TiN and Ti2Ni intermetallic phases were revealed by the SEM/EDS analysis and confirmed by the XRD results. The developed titanium matrix nanocomposite displayed a much lower coefficient of friction and wear resistance than the CP-Ti. The strong interface between the matrix and the reinforcements prevents the reinforcements from pulling out of the matrix. Ti-Ni-TiCN nanocomposite showed the predominance of abrasive wear while mixed wear mode was observed, in the CP-Ti. The developed material has the capacity to replace CP-Ti and perform admirably in a tribo-system.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3074
Author(s):  
Kaveh Torkashvand ◽  
Vinod Krishna Selpol ◽  
Mohit Gupta ◽  
Shrikant Joshi

Sliding wear performance of thermal spray WC-based coatings has been widely studied. However, there is no systematic investigation on the influence of test conditions on wear behaviour of these coatings. In order to have a good understanding of the effect of test parameters on sliding wear test performance of HVAF-sprayed WC–CoCr coatings, ball-on-disc tests were conducted under varying test conditions, including different angular velocities, loads and sliding distances. Under normal load of 20 N and sliding distance of 5 km (used as ‘reference’ conditions), it was shown that, despite changes in angular velocity (from 1333 rpm up to 2400 rpm), specific wear rate values experienced no major variation. No major change was observed in specific wear rate values even upon increasing the load from 20 N to 40 N and sliding distance from 5 km to 10 km, and no significant change was noted in the prevailing wear mechanism, either. Results suggest that no dramatic changes in applicable wear regime occur over the window of test parameters investigated. Consequently, the findings of this study inspire confidence in utilizing test conditions within the above range to rank different WC-based coatings.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sakthi Sadhasivam RM ◽  
Ramanathan K. ◽  
Bhuvaneswari B.V. ◽  
Raja R.

Purpose The most promising replacements for the industrial applications are particle reinforced metal matrix composites because of their good and combined mechanical properties. Currently, the need of matrix materials for industrial applications is widely satisfied by aluminium alloys. The purpose of this paper is to evaluate the tribological behaviour of the zinc oxide (ZnO) particles reinforced AA6061 composites prepared by stir casting route. Design/methodology/approach In this study, AA6061 aluminium alloy matrix reinforced with varying weight percentages (3%, 4.5% and 6%) of ZnO particles, including monolithic AA6061 alloy samples, is cast by the most economical fabrication method, called stir casting. The prepared sample was subjected to X-ray photoelectron spectroscopy (XPS) analysis, experimental density measurement by Archimedian principle and theoretical density by rule of mixture and hardness test to investigate mechanical property. The dry sliding wear behaviour of the composites was investigated using pin-on-disc tribometer with various applied loads of 15 and 20 N, with constant sliding velocity and distance. The wear rate, coefficient of friction (COF) and worn surfaces of the composite specimens and their effects were also investigated in this work. Findings XPS results confirm the homogeneous distribution of ZnO microparticles in the Al matrix. The Vickers hardness result reveals that higher ZnO reinforced (6%) sample have 34.4% higher values of HV than the monolithic aluminium sample. The sliding wear tests similarly show that increasing the weight percentage of ZnO particles leads to a reduced wear rate and COF of 30.01% and 26.32% lower than unreinforced alloy for 15 N and 36.35% and 25% for 20 N applied load. From the worn surface morphological studies, it was evidently noticed that ZnO particles dispersed throughout the matrix and it had strong bonding between the reinforcement and the matrix, which significantly reduced the plastic deformation of the surfaces. Originality/value The uniqueness of this work is to use the reinforcement of ZnO particles with AA6061 matrix and preparing by stir casting route and to study and analyse the physical, hardness and tribological behaviour of the composite materials.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kawaljit Singh Randhawa ◽  
Ashwin Patel

Purpose This paper aims to investigate the tribological performance, i.e. abrasion resistance, friction coefficient and wear rates, of self-lubricated water conditioned polyamide6/boric oxide composites. Design/methodology/approach Polyamide6 and polyamide6/boric oxide self-lubricated composites were immersed in water for 15 days to analyze the effect of water conditioning on friction, wear and abrasion resistance. Tribological testing on pin-on-disc tribometer and abrasion resistance testing on TABER abrader were performed to see the friction coefficient and wear rates of materials. The scanning electron microscopy (SEM) characterizations were performed to analyze the wear tracks. Findings Tribological testing results revealed the loss in abrasive resistance, but there was an improvement in frictional coefficient and wear rates with steel after water absorption. The SEM images clearly show less depth of wear tracks in water-conditioned materials than dry ones. Water conditioning was found supportive in the formation of smooth lubricating transfer film on steel disc during the tribological testing. Originality/value The tribological behaviour of polymer composites is different in dry and in high humidity or water conditions. Experiments were performed to investigate B2O3 solid lubricant filler effectiveness on tribological behaviour of water-conditioned polyamide composites. Bonding between polyamide6 and water molecules plus the formation of orthoboric acid was found advantageous in decreasing the friction coefficient and wear rates of composites.


Author(s):  
J. Quintelier ◽  
P. Samyn ◽  
P. De Baets ◽  
J. Degrieck

On a Pin-on-Disc test rig with composite disc and steel pin tribological experiments were done on pultruded glass fiber reinforced polymer matrix composites plates. The wear and frictional behavior strongly depends on the structure. Also the normal load plays an important role in the frictional behavior, which is of greater importance than the speed. The formation of a thin polymer film onto the wear track results in a lowering of the coefficient of friction with 20%.


Sign in / Sign up

Export Citation Format

Share Document