scholarly journals Analysis by Pineapple Leaf in Chemical Pulping Process

2015 ◽  
Vol 773-774 ◽  
pp. 1215-1219
Author(s):  
Zawawi Daud ◽  
Mohd Zainuri Mohd Hatta ◽  
Angzzas Sari Mohd Kassim ◽  
Ashuvila Mohd Kassim ◽  
Halizah Awang

Malaysia has an abundance of agro waste material that have not been fully utilized to a maximum production. Thus, the finding of a new alternative fiber in non wood material will be favorable in paper production. Pineapple (Ananas Comosus) is the common tropical plant, which consists of coalesced berries. This pineapple is leading member of the family of Bromeliaceae and it came from genus Ananas. Fiber bundle from pineapple leaf can be separated from the cortex where it reveals the pineapple leaf fiber in multi-cellular and lignocelluloses pattern. This leaf has a ribbon-like structure and cemented together by lignin, pentosan-like materials, where it contributes to the strength of fiber [7]. All parts in pineapple from fruits to leaves could be consumed to give a health benefit for human life. Pineapple had been used as textile fiber, anti-inflammatory and also anti-helminthic agent. According to the FAO online database, the Malaysian country had consumed 255,000 tones per year and in third position in the world of consuming pineapple production. Pineapple is mainly produced as canned fruits and also coarse textiles in some Southeast Asian countries. Leaves of pineapple had been used as coarse textiles because of the fiber composition and structure inside the leaves [3]. All fibrous in non wood materials especially pineapple leaf consists of cellulose, holocellulose, hemicelluloses and lignin along with some extraneous material called extractives such as gum and resin. Previous research indicates pineapple leaf fiber contained higher cellulose content than wood fiber. Pineapple leaf fibers also consist of lignin [23], an adhesive component that binds the cellulose and hemicellulose. Pineapple leaf fiber had the lowest lignin content than other alternative fiber, which is favorable during chemical processing [12]. The chemical composition aspects have been considered in the previous literature, such as banana stem, coconut and oil palm and had been reported extensively. Pineapple leaf reported has a lowest lignin (10.5%) rather than banana stem (18.6%), oil palm (20.5%) and coconut (32.8%) that suggest can undergo bleaching more easily and have high fiber strength [12]. Besides that, pineapple leaf contains high holocelulose content (87.6%) than banana stem (65.2%), oil palm (83.5%) and coconut (56.3%) [11]. Those properties depend on the content of chemical composition in the pineapple leaf fiber, which is cellulose, hemicelluloses and lignin content [15].

2014 ◽  
Vol 893 ◽  
pp. 488-491 ◽  
Author(s):  
Elfarizanis Baharudin ◽  
Alyani Ismail ◽  
Adam Reda Hasan Alhawari ◽  
Edi Syams Zainudin ◽  
Dayang L.A. Majid ◽  
...  

This paper presents the results on dielectric properties of pulverized material based on agricultural waste namely oil palm frond and pineapple leaf fiber for microwave absorber application in the X-band frequency range. The investigation is started by identifying the pulverized materials permittivities and loss tangents using coaxial probe technique, followed by density measurement comprising the determination of bulk and solid densities. Then, by using dielectric mixture model, the solid particle dielectric properties were determined. It is observed that the air properties give quite an effect on the permittivity and loss tangent of the pulverized materials. It is also found that the lower the material density the higher material dielectric constant will be. Furthermore, the results show that, both oil palm frond and pineapple leaf fiber are potential to be X-band absorber with average dielectric constant of 4.40 and 3.38 respectively. The loss tangents for both materials were observed to be more than 0.1 which mark them as lossy materials.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Jieyu Wu ◽  
Tuhua Zhong ◽  
Wenfu Zhang ◽  
Jiangjing Shi ◽  
Benhua Fei ◽  
...  

AbstractThe effects of heat treatment at various temperatures on mechanically separated bamboo fibers and parenchyma cells were examined in terms of color, microstructure, chemical composition, crystallinity, and thermal properties. The heat-treated parenchyma cells and fibers were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), chemical composition analysis, and thermogravimetric analysis (TGA). The results revealed that the colors of bamboo fibers and parenchyma cells were darkened as treatment temperature increased. The microstructure of the treated fibers and parenchyma cells slightly changed, yet the shape of starch granules in parenchyma cells markedly altered at a temperature of above 160 °C. The chemical compositions varied depending on the heat treatment temperature. When treated at 220 °C, the cellulose content was almost unchanged in fibers but increased by 15% in parenchyma cells; the hemicellulose content decreased and the lignin content increased regardless of fibers and parenchyma cells. The cellulose crystal structure was nearly unaffected by heat treatment, but the cellulose crystallinity of fibers changed more pronouncedly than that of parenchyma cells. The thermal stability of parenchyma cells after heat treatment was affected more substantially compared to fibers.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1642
Author(s):  
Dalia C. Morán-Velázquez ◽  
Juan L. Monribot-Villanueva ◽  
Matthieu Bourdon ◽  
John Z. Tang ◽  
Itzel López-Rosas ◽  
...  

Spines are key plant modifications developed to deal against herbivores; however, its physical structure and chemical composition have been little explored in plant species. Here, we took advantage of high-throughput chromatography to characterize chemical composition of Agave fourcroydes Lem. spines, a species traditionally used for fiber extraction. Analyses of structural carbohydrate showed that spines have lower cellulose content than leaf fibers (52 and 72%, respectively) but contain more than 2-fold the hemicellulose and 1.5-fold pectin. Xylose and galacturonic acid were enriched in spines compared to fibers. The total lignin content in spines was 1.5-fold higher than those found in fibers, with elevated levels of syringyl (S) and guaiacyl (G) subunits but similar S/G ratios within tissues. Metabolomic profiling based on accurate mass spectrometry revealed the presence of phenolic compounds including quercetin, kaempferol, (+)-catechin, and (−)-epicatechin in A. fourcroydes spines, which were also detected in situ in spines tissues and could be implicated in the color of these plants’ structures. Abundance of (+)-catechins could also explain proanthocyanidins found in spines. Agave spines may become a plant model to obtain more insights about cellulose and lignin interactions and condensed tannin deposition, which is valuable knowledge for the bioenergy industry and development of naturally dyed fibers, respectively.


REAKTOR ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 174-182
Author(s):  
Yulianti Sampora ◽  
Yenni Apriliany Devy ◽  
Dewi Sondari ◽  
Athanasia Amanda Septevani

This research was aimed to evaluate the isolation of cellulose derived from empty fruit bunches (EFB), especially to increase the purity of cellulose content by subsequent pretreatment process involving delignification using NaOH followed by bleaching process using hydrogen peroxide (H2O2). The result showed that the cellulose content of the raw EFB content at 37.6% ± 0.3 w/w increased to 89.2% ± 0.4 w/w after the simultaneous pretreatment process. Moreover, after the simultaneous of bleaching process using H2O2, the lignin content can be reduced up to 3.1% ± 0.1 w/w which similar to cellulose standard (2.7% ± w/w). The utilization of simultaneous pretreatment process can also reduce the hemicellulose content from 23.9% ± 0.3 w/w (raw EFB) to 7.7% ± 0.2 w/w even lower than the cellulose standard (13.1% w/w). FTIR spectrum showed that the peak absorption of cellulose increased significantly upon the simultaneous process of delignification-bleaching. Morphological changes of the raw EFB compared to pre-treated EFB as a note by SEM analysis showed the significant transformation from the larger size and tightly bundles of micro-fibril cellulose into smaller size and individually separated micro-fibrils. Further through the simultaneous process exhibited yield at 80-85%, high crystallinity (70-80%), and good thermal stability in terms of Tonset at about 230-290 °C. From these results, it can be concluded that the subsequent pretreatment process involving NaOH delignification and H2O2 bleaching processes more likely offer a high selectivity of cellulose microcrystalline from lignocellulosic biomass material by simultaneous reduction of the hemicellulose and lignin content without disrupting the structure of cellulose.Keywords: bleaching; cellulose; delignified; microcrystalline cellulose; oil palm empty fruit bunches


2019 ◽  
Vol 107 ◽  
pp. 131-138
Author(s):  
DONATA KRUTUL ◽  
ANDRZEJ ANTCZAK ◽  
TERESA KŁOSIŃSKA ◽  
ANDRZEJ RADOMSKI ◽  
MICHAŁ DROŻDŻEK ◽  
...  

The chemical composition of poplar wood in relation to the species and age of trees. The contents of the following substances: mineral substances, extractives, cellulose, lignin, holocellulose, in wood from fastgrowing poplar species (Populus deltoides x maximowiczii and Populus trichocarpa Torr and A.Gray) aged 2.5, 3, 5 and 7 years were compared to the contents of the abovementioned substances in Populus nigra L. and Populus alba L. wood, aged about 30. According to other publications, the cellulose and lignin contents increase in line with the tree's age. On the other hand, the comparison of cellulose content in studied poplar wood showed that its content did not depend from the species of tree, age and growth environment. Whereas, the content of extractives in poplar wood was dependent from the species of tree and growth environment. The lignin content in Populus deltoides x maximowiczii and Populus trichocarpa wood did not depend from its age and was similar to the lignin content in 30-year-old P. nigra wood. 30-year-old wood of P. nigra and P. alba contained less holocellulose compared to its contents in P. deltoides x maximowiczii and P. trichocarpa wood, regardless of its age.


1944 ◽  
Vol 34 (3) ◽  
pp. 165-171 ◽  
Author(s):  
W. S. Ferguson ◽  
E. R. Armitage

Samples of bracken were taken at fortnightly intervals from June to November at two centres. These were separated into leaf and stem and analysed.Larger samples were treated for the preparation of proteins and sugars by passing the bracken through a roller-mill, precipitating the protein with acid and concentrating the juice for sugars.Chemical composition. The main points in the analyses of the whole plants were as follows, all figures quoted being on a dry-matter basis:(1) The crude and true protein contents of young bracken in early June were high, 21 and 18%, but these fell rapidly to 10% in mid-July and finally to 3% in October.(2) The lignin content was high throughout, rising from almost 20% in young bracken to 34% in the nearly dead material.(3) The cellulose content followed the lignin content.(4) In July and August the bracken contained about 10% of total sugars. A rapid fall occurred in October, and the final samples contained very little sugars.


2012 ◽  
Vol 488-489 ◽  
pp. 1066-1070 ◽  
Author(s):  
Yusri Yusof ◽  
Abdul Halim Md. Sha’ban

The paper explores the use of pineapple leaf fiber (PALF), banana stem fiber and kenaf fiber to produce paper has been done in order to find the alternative source and the method to recyle used newspaper. The decreasing of already material which is cause by the unstable ecosystem and taking long time to harvest. The alternative source can help to increase production of paper and reduce the cost of production. The experiments using PALF, banana stem fiber and kenaf fiber as raw material in paper production have been conducted to assess the advantages in terms of mechanical properties, especially tensile strength, tearing strength, thickness, and grammage of paper. The result obtained from the tests will be compared among the three types of material. Through the observation of the experiment, it was found that the data obtained with different properties of paper produced from the different material.


Sign in / Sign up

Export Citation Format

Share Document