A Grid Connected Flyback Inverter with a DC Active Filter for Photovoltaic Cells

2015 ◽  
Vol 781 ◽  
pp. 406-409
Author(s):  
Dome Sulong ◽  
Chuttchaval Jeraputra

This paper presents the design and control of a grid-connected flyback inverter with a DC active filter for photovoltaic (PV) cells. The proposed topology consists of a flyback DC-AC inverter and a DC active filter that can operate independently. The flyback inverter, controlled in digital peak current mode, regulates the full-wave rectified sinusoidal current later, which is alternately inverted and injected into the grid. The DC active filter regulates the smooth current/power drawn from a PV module by using cascaded proportional-integral (PI) controllers. Analysis, design and control of the proposed topology are presented. A 100W/220V/50Hz prototype is developed and tested. The experimental results show that the proposed flyback inverter with a DC active filter is capable of regulating a sinusoidal current fed into the grid, actively filtering the DC current/power and achieving reasonably high energy conversion efficiency.

2020 ◽  
Vol 8 (46) ◽  
pp. 24284-24306
Author(s):  
Xuefeng Ren ◽  
Yiran Wang ◽  
Anmin Liu ◽  
Zhihong Zhang ◽  
Qianyuan Lv ◽  
...  

Fuel cell is an electrochemical device, which can directly convert the chemical energy of fuel into electric energy, without heat process, not limited by Carnot cycle, high energy conversion efficiency, no noise and pollution.


Nano Letters ◽  
2010 ◽  
Vol 10 (2) ◽  
pp. 726-731 ◽  
Author(s):  
Chieh Chang ◽  
Van H. Tran ◽  
Junbo Wang ◽  
Yiin-Kuen Fuh ◽  
Liwei Lin

2020 ◽  
Vol 87 (9) ◽  
Author(s):  
Zhaoqi Li ◽  
Qian Deng ◽  
Shengping Shen

Abstract In this work, we propose a circular membrane-based flexoelectric energy harvester. Different from previously reported nanobeams based flexoelectric energy harvesters, for the flexoelectric membrane, the polarization direction around its center is opposite in sign to that far away from the center. To avoid the cancelation of the electric output, electrodes coated to upper and lower surfaces of the flexoelectric membrane are respectively divided into two parts according to the sign of bending curvatures. Based on Hamilton’s principle and Ohm’s law, we obtain governing equations for the circular membrane-based flexoelectric energy harvester. A generalized assumed-modes method is employed for solving the system, so that the performance of the flexoelectric energy harvester can be studied in detail. We analyze the effects of the thickness h, radius r0, and their ratio on the energy harvesting performance. Specifically, we show that, by selecting appropriate h and r0, it is possible to design an energy harvester with both high energy conversion efficiency and low working frequency. At last, through numerical simulations, we further study the optimization ratio for which the electrodes should be divided.


2020 ◽  
Vol 8 (38) ◽  
pp. 13270-13285 ◽  
Author(s):  
Krzysztof T. Wojciechowski ◽  
Taras Parashchuk ◽  
Bartlomiej Wiendlocha ◽  
Oleksandr Cherniushok ◽  
Zinovi Dashevsky

Advanced electronic structure engineering was applied for obtaining a record-high energy conversion efficiency for n-type PbTe.


Sign in / Sign up

Export Citation Format

Share Document