A STUDY ON MECHANICAL PROPERTIES OF PVA FIBER REINFORCED SUPER-LIGHTWEIGHT MORTAR

2010 ◽  
Vol 24 (15n16) ◽  
pp. 2543-2548
Author(s):  
SHIGEYUKI DATE ◽  
TETSURO KASAI

In this study, not only bending strength of Super-lightweight mortar (SLM) but also resistance to impact load of it, with several types of PVA fibers of different lengths and diameters, were investigated. It was shown that, when the diameter of the fiber decreased and fiber-volume fraction increased, bending strength and resistance to the impact load were generally improved. However, the effect of the performance improvement of the SLM showed the tendency to become small in mix proportion that has too large total surface area of fiber.

2021 ◽  
Vol 6 (1) ◽  
pp. 30-37
Author(s):  
Sri Hastuti ◽  
Herru Santosa Budiono ◽  
Diki Ilham Ivadiyanto ◽  
Muhammad Nurdin Nahar

Inovasi baru serat dari sabut kelapa dimanfaatkan untuk meningkatkan nilai ekonomis dari serat sabut kelapa, oleh karena itu dirancanglah pendayagunaan serat dari sabut kelapa untuk penguat komposit dengan material serat alam yang biodegradable. Hal ini untuk mendukung penggunaan komposit yang ramah terhadap lingkungan dan mengurangi penggunaan material komposit serat sintetis yang polutan. Tujuan penelitian adalah menganalisis sifat mekanik pada komposit serat alam bermaterial serat dari sabut kelapa yang ramah lingkungan. Metode penelitian pembuatan komposit berpenguat serat dari sabut kelapa dilakukan treatment NaOH 15% selama 5 jam dan fraksi volume serat 10 %, 15 %, dan 20 %. Komposit  serat dari sabut kelapa dengan matriks UPRs 157 BQTN dengan hardener MEXPO. Pengujian mekanik dilakukan uji bending menggunakan standar ASTM D790 dan uji impak  menggunakan standar ASTM D5941.  Pengujian impak komposit serat alam menunjukkan ketangguhan impak komposit pada fraksi volume serat 20% dengan nilai 0.017588J/mm2. Hasil pengujian menunjukkan peningkatan fraksi volume serta berpengaruh terhadap peningkatan kekuatan bending komposit serat dari sabut kelapa  dengan kekuatan optimum bending pada fraksi volume serat 10% dengan nilai 44,33N/mm2. Hal ini menunjukkan peningkatan fraksi volume serat dengan perendaman NaOH 15% akan meningkatkan sifat mekanik bending dan impak komposit. Perendaman NaOH memberikan pengaruh daya serap sabut kelapa terhadap matrik Unsaturated Polyester yang dapat meningkatkan daya rekat antara penguat serat dengan matrik sehingga meningkatkan sifat mekanik bending dan impak komposit. ABSTRACT The innovation of coco fiber is used to increase the economic value of coconut coir, therefore the utilization of coconut fiber for reinforcing composites with biodegradable natural fiber material is designed. This is to support the use of composites that are friendly to the environment and reduce the use of pollutant synthetic fiber composite materials. The research objective was to analyze the mechanical properties of natural fiber composites with environmentally friendly coconut fiber as material. The research method of making fiber-reinforced composites from coconut coir was carried out by 15% NaOH treatment for 5 hours and a fiber volume fraction of 10%, 15%, and 20%. Composite fiber from coconut coir with UPRs 157 BQTN matrix with MEXPO hardener. Mechanical testing is carried out using the ASTM D790 standard and the impact test using the ASTM D5941 standard. The impact test of natural fiber composites showed the impact toughness of the composite at a fiber volume fraction of 20% with a value of 0.017588 J/ mm2. The test results showed an increase in volume fraction and an effect on the increase in the bending strength of coconut fiber composites with the optimum bending strength at a fiber volume fraction of 10% with a value of 44.33N /mm2. This shows that the increase in fiber volume fraction by immersion in 15% NaOH will increase the bending mechanical properties and the impact of the composite. Soaking NaOH has an effect on the absorption power of coconut coir on the Unsaturated Polyester matrix which can increase the adhesion between the fiber reinforcement and the matrix thereby increasing the bending mechanical properties and impact of the composite.


2021 ◽  
Vol 272 ◽  
pp. 02014
Author(s):  
Bo Chen ◽  
Liping Guo ◽  
Lihui Zhang ◽  
Wenxiao Zhang ◽  
Yin Bai ◽  
...  

The influence of polyvinyl alcohol (PVA) fiber volume fraction and fly ash content on the creep behavior of high ductility cementitious composites (HDCC) under compression was investigated. For this investigation, the creep behavior of four HDCC groups with cube compressive strength of 30–50 MPa, PVA fiber volume fraction of 1.5% and 2.0%, and fly ash content of 60% and 80% at 7 d and 28 d loading periods, respectively, were evaluated. A compressive creep model, which reflects the loading age and holding time, was established. The results revealed that when the load was applied at 7 d and 28 d, and then maintained for 245 d, the specific creep of HDCC ranged from 95×10-6/ MPa to 165×10-6/ MPa and from 59×10-6/ MPa to 135 × 10−6/ MPa, respectively. The corresponding creep coefficients ranged from 1.48 to 2.25 and from 1.10 to 1.94, respectively. The PVA fiber volume fraction and fly ash content were the main factors affecting the specific creep of HDCC, which increased with increasing fiber fraction and fly ash content. Under short-term loading, the fiber volume fraction played a leading role in the specific creep, and the fly ash content played the leading role during long-term loading. Furthermore, the specific creep and creep coefficient decreased significantly with increasing loading age. The classical creep model described by a power exponent function is suitable for HDCC.


2012 ◽  
Vol 450-451 ◽  
pp. 364-369
Author(s):  
Wen Liu ◽  
Shi Lang Xu ◽  
Qing Hua Li

Fatigue flexural fracture test is taken out in this paper, to study the fatigue crack propagation rate of ultra-high toughness cementitious composites (UHTCC), as well as the effect of fiber volume fraction on fatigue crack propagation rate. Three fiber volume fractions are adopted: 1.5%, 2.0% and 2.5%. Similar to Paris law, a fatigue crack propagation equation of UHTCC is introduced, as dA/dN=C(△J)m, with the two parameters A and △J are defined as the covering area of multiple fatigue cracks and the fatigue amplitude of J integral. Through experiment and analysis, the fatigue crack propagation rate slows down with the increase of PVA fiber fraction. Furthermore, the influence of PVA fiber on the propagation rate was found to become obvious with the increase of J integral.


2011 ◽  
Vol 332-334 ◽  
pp. 735-738 ◽  
Author(s):  
Li Yan Liu ◽  
Yong Liang Han ◽  
Fei Zhang

This paper is aiming to research the impact behavior of flax fiber reinforced PP laminates considering the end use of the products. Flax yarn and Polypropylene (PP) filaments were twisted together with three fiber volume fraction 0.45, 0.50 and 0.60 to form the commingled yarns which were woven into fabrics as prepreg with plain and twill structures respectively. The prepregs of different layers were pressed into flax reinforced PP composites in the process of hot-pressing. The laminates with different fiber volume fraction, layer, and woven structure were tested and analyzed respectively aiming at the impact resistibility in succession. SEM micrograph of the impact fracutured surface was observed and analyzed as well. The results reveal that the impact properties of laminates with twill structures are prior to those of laminates with plain structures when other technical parameters are the same. The ability of impact resistibility of flax reinforced PP laminates improves with the increase of the fibre volume fraction, layer amount and impact velocity respectively in this research.


2015 ◽  
Vol 786 ◽  
pp. 421-425
Author(s):  
R. Arravind ◽  
M. Saravanan ◽  
K. Balasubramanian

This paper discusses about the impact of fiber volume fraction on the bending behavior of a laminated composite beam. A two layered composite beam with upper layer made of glass fiber epoxy resin and reinforced with Kevlar at the bottom side of the beam is modeled and structural analysis is carried out. The analysis shows that the tensile strength increases with increase in fiber volume fraction. The compression strength decreases with increase in fiber volume fraction in the upper fiber where as increases in the bottom fiber and the obtained results are correlating with the experimental and analytical studies.


2020 ◽  
Vol 857 ◽  
pp. 15-21
Author(s):  
Nesreen B. Najib ◽  
Shatha D. Mohammed ◽  
Wasan Z. Majeed ◽  
Nada Mahdi Fawzi A. Jalawi

Reactive Powder Concrete (RPC) could be considered as the furthermost significant modern high compressive strength concrete. In this study, an experimental investigation on the impact of micro steel fiber volume fraction ratio and gamma ray irradiation duration influence upon the compressive strength of RPC is presented. Three volume fraction ratios (0.0, 1.0 and 1.5) % was implemented. For each percentage of the adopted fiber ratios, six different irradiation duration was considered; these are (1, 2, 3, 4, 5 and 6) days. Gamma source (Cs-137) of energy (0.662) MeV and activity (6) mci was used. In a case of zero volume fraction ratio, the experimental results showed that gamma ray had a significant influence on the reducing of the compressive strength varies between (1.2-8.6)% for a period of (1-6) days, respectively. Although there was a decrease in the compressive strength for a state of non-zero volume fraction ratio (1 and 1.5) % varies between (1.0-3.1 and 0.4-1.6) %, respectively, the attained results indicated that gamma ray had no significant effect to reduce the compressive strength of the RPC that’s included micro steel fibers as a volume fraction.


2007 ◽  
Vol 352 ◽  
pp. 77-80 ◽  
Author(s):  
Katsumi Yoshida ◽  
Hideki Matsumoto ◽  
Masamitsu Imai ◽  
Kazuaki Hashimoto ◽  
Yoshitomo Toda ◽  
...  

In this study, Tyranno SA fiber cloth was coated with carbon black and SiC powder containing sintering aids by means of electrophoretic deposition method, and SiC/SiC composites with three different fiber volume fractions were fabricated using the Tyranno SA cloth by hot-pressing at 1700oC. The sufficient formation of the SiC matrix between each fiber could be observed. The composite fractured in non-brittle manner, and bending strength decreased with increasing fiber volume fraction. The crack propagation and fracture behavior depended on the fiber volume fraction. These differences in bending strength and fracture behavior would be caused by the difference in the interfacial bonding between fiber cloth and the matrix.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2666
Author(s):  
Li ◽  
Liu ◽  
Wu ◽  
Wu ◽  
Wu

An engineered cementitious composite (ECC) was reinforced with a steel grid and fibers to improve its tensile strength and ductility. A series of tensile tests have been carried out to investigate the quasi-static tensile capacity of the reinforced ECC. The quasi-static tensile capacities of reinforced ECCs with different numbers of steel-grid layers, types of fibers (Polyvinyl alcohol (PVA) fiber, KEVLAR fiber, and polyethylene (PE) fiber), and volume fractions of fibers have been tested and compared. It is indicated by the test results that: (1) On the whole, the steel grid-PVA fiber and steel grid-KEVLAR fiber reinforced ECCs have high tensile strength and considerable energy dissipation performance, while the steel grid-PE fiber reinforced ECC exhibits excellent ductility. (2) The ultimate tensile strength of the reinforced ECC can be improved by the addition of steel grids. The maximal peak tensile stress increase is about 50–95% or 140–190% by adding one layer or two layers of steel grid, respectively. (3) The ultimate tensile strength of the reinforced ECC can be enhanced with the increase of fiber volume fraction. For a certain kind of fiber, a volume fraction between 1.5% and 2% grants the reinforced ECC the best tensile strength. Near the ultimate loading point, the reinforced ECC exhibits strain hardening behavior, and its peak tensile stress increases considerably. The energy dissipation performance of the reinforced ECC can also be remarkably enhanced by such an increase in fiber volume fraction. (4) The ductility of the steel grid-PVA fiber reinforced ECC can be improved by the addition of steel grids and the increase of fiber volume fraction. The ductility of the steel grid-KEVLAR fiber reinforced ECC can be improved by the addition of steel grids alone. The ductility and energy dissipation performance of the steel grid-PE fiber reinforced ECC can be improved with the increase of fiber volume fraction alone. A mechanical model for the quasi-static initial and ultimate tensile strength of the steel grid-fiber reinforced ECC is proposed. The model is validated by the test data from the quasi-static tension experiments on the steel grid-PE fiber reinforced ECC.


2013 ◽  
Vol 539 ◽  
pp. 99-102
Author(s):  
Hai Tao Tan ◽  
Wu Yao ◽  
Xiao Ming Song ◽  
Shuai Dong

The ultimate load, fracture energy and equivalent bending strength of hybrid steel fiber reinforced mortar were investigated with a constant fiber volume fraction in this paper. The results showed that ultimate load of hybrid steel-fiber reinforced mortar was higher than that of mono-fiber reinforced mortar; fracture energy and equivalent bending strength increased with the volume fraction of steel fiber with end hooks.


2019 ◽  
Vol 69 (335) ◽  
pp. 195
Author(s):  
S. P. Yin ◽  
X. Q. Hu ◽  
Y. T. Hua

To study the compression performance of TRM-strengthened columns with small eccentricities, a total of 9 reinforced concrete (RC) columns with end corbels were subjected to compression testing. The test parameters are as follows: the number of textile layers, the ratio of longitudinal reinforcement, and polyvinyl alcohol (PVA) short-cut fiber volume fraction. The experimental results indicated that, compared to the control, columns with three layers of textile exhibited an approximately 10.66% increase in the bearing capacity. However, the effect increased only slightly when the number of textile layers increased to 4. Besides, the effect was improved with the increase in the ratio of longitudinal reinforcement and PVA fiber volume fraction. Finally, based on laboratory tests and related research results, a model for calculating normal section bearing capacity of TRM-strengthened columns with small eccentricities was presented. A comparison of the theoretical and experimental data demonstrated the applicability of the proposed model.


Sign in / Sign up

Export Citation Format

Share Document