Black Silicon for Higher Efficiency in Solar Cells

2015 ◽  
Vol 787 ◽  
pp. 92-96
Author(s):  
Digvijay Raghunathan

The very low efficiency of solar cells can be attributed to a plethora of reasons. The most important reason being, reflection of sunlight from the solar cell surface. Most of the sunlight incident on the solar cells gets reflected back due to the smooth surface of the silicon wafers. This paper presents a novel method to avoid this by using black silicon solar cells. Black silicon tends to make use of the concept of black body radiation to absorb all the rays incident on it and thereby reducing the reflectivity of the solar cell. The nano-fabrication technique involves usage of special wet-etch techniques to achieve nano-sized pores on the surface of silicon. In case of normal solar cells, usually layers of a suitable anti-reflective coating are given which tend to minimize the amount of reflection. This unfortunately increases the manufacturing cost. The unfavourable conditions of heat and dirt further tend to soil the layer of anti-reflective coating, reducing the gains of anti-reflective coating. Thus, black silicon solar cells provide better efficiency while simultaneously reducing the fabrication cost.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Zengchao Zhao ◽  
Bingye Zhang ◽  
Ping Li ◽  
Wan Guo ◽  
Aimin Liu

The performance of black silicon solar cells with various passivation films was characterized. Large area (156×156 mm2) black silicon was prepared by silver-nanoparticle-assisted etching on pyramidal silicon wafer. The conversion efficiency of black silicon solar cell without passivation is 13.8%. For the SiO2andSiNx:H passivation, the conversion efficiency of black silicon solar cells increases to 16.1% and 16.5%, respectively. Compared to the single film of surface passivation of black silicon solar cells, the SiO2/SiNx:H stacks exhibit the highest efficiency of 17.1%. The investigation of internal quantum efficiency (IQE) suggests that the SiO2/SiNx:H stacks films decrease the Auger recombination through reducing the surface doping concentration and surface state density of the Si/SiO2interface, andSiNx:H layer suppresses the Shockley-Read-Hall (SRH) recombination in the black silicon solar cell, which yields the best electrical performance of b-Si solar cells.


2021 ◽  
Vol 11 (9) ◽  
pp. 4170
Author(s):  
Jeong Eun Park ◽  
Won Seok Choi ◽  
Donggun Lim

Silicon wafers are crucial for determining the price of solar cell modules. To reduce the manufacturing cost of photovoltaic devices, the thicknesses of wafers are reduced. However, the conventional module manufacturing method using the tabbing process has a disadvantage in that the cell is damaged because of the high temperature and pressure of the soldering process, which is complicated, thus increasing the process cost. Consequently, when the wafer is thinned, the breakage rate increases during the module process, resulting in a lower yield; further, the module performance decreases owing to cracks and thermal stress. To solve this problem, a module manufacturing method is proposed in which cells and wires are bonded through the lamination process. This method minimizes the thermal damage and mechanical stress applied to solar cells during the tabbing process, thereby manufacturing high-power modules. When adopting this method, the front electrode should be customized because it requires busbarless solar cells different from the existing busbar solar cells. Accordingly, the front electrode was designed using various simulation programs such as Griddler 2.5 and MathCAD, and the effect of the diameter and number of wires in contact with the front finger line of the solar cell on the module characteristics was analyzed. Consequently, the efficiency of the module manufactured with 12 wires and a wire diameter of 0.36 mm exhibited the highest efficiency at 20.28%. This is because even if the optical loss increases with the diameter of the wire, the series resistance considerably decreases rather than the loss of the short-circuit current, thereby improving the fill factor. The characteristics of the wire-embedded ethylene vinyl acetate (EVA) sheet module were confirmed to be better than those of the five busbar tabbing modules manufactured by the tabbing process; further, a high-power module that sufficiently compensated for the disadvantages of the tabbing module was manufactured.


2016 ◽  
Vol 24 (18) ◽  
pp. A1224 ◽  
Author(s):  
Jae-Won Song ◽  
Yoon-Ho Nam ◽  
Min-Joon Park ◽  
Bongyoung Yoo ◽  
Jun-Sik Cho ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (59) ◽  
pp. 35831-35839 ◽  
Author(s):  
Mustafa K. A. Mohammed

Carbon-based perovskite solar cells (C-PSCs) are the most promising photovoltaic (PV) due to their low material and manufacturing cost and superior long-term stability.


We know the mechanical properties of silicon. However, little is known about the mechanical properties of silicon solar cells. Modeling is widely used in the study of solar cells. This article discusses in detail the effect of mechanical stress on solar cells. To do this, a model of the solar cell was created and simulated at Comsol Multiphysics. The results were presented visually and graphically. The results were tested for relevance and accuracy


2014 ◽  
Vol 2014 (1) ◽  
pp. 000873-000876
Author(s):  
Yu-Chou Shih ◽  
Yue Shao ◽  
Yeong-Her Lin ◽  
Frank G. Shi

Scientists are looking for alternatives to fossil fuels as energy source in order to reduce the environmental issues. Solar energy is one of the candidates that have attracted our attention. Monocrystalline and polycrystalline silicon materials are the most common ones for solar cell panels, and one of the key properties of silicon solar cells is the interfacial resistivity between the front silver electrodes and the n-type silicon emitters. The interfacial resistivity is hugely affected by the interfacial structure between silver electrodes and n-type silicon emitters, which plays a very substantial role for the electrical and mechanical properties of the fabricated silicon solar cells. Previous studies show that the residual glass frits layers at the Ag/Si interfaces after the firing process will dramatically increase the contact resistance and this phenomenon subsequently leads to degradation in the overall efficiency of the silicon solar cells. In this study, nano-sized glass frits were employed to improve the interfacial conductivity. Transfer length method (TLM) was applied to evaluate the electrical performance of samples made by different glass frits. Because of the excellent etching ability of nano-sized glass frits, the total amount of isolating compositions can be reduced and therefore there is less residual ceramic at the interfaces. For samples made with nano-sized glass frits, the specific contact resistivity was found to be only 40% of that of samples made with micro-sized glass frits after otherwise identical processing. Our results show that nano-sized glass frits can provide better energy efficiency, less processing time and lower manufacturing cost.


1970 ◽  
Vol 46 (1) ◽  
pp. 117-122 ◽  
Author(s):  
M Eusuf ◽  
M Khanam ◽  
S Khatun

In part II of this series, it was reported that the solar home system (SHS) supplied by REB in some islands of the Meghna river in the district of Narsingdi could not meet the demand of the recipients in the rainy season when the sky remained overcast with cloud. The tilt angle for all installations was 45° facing south. In this study, effects of direct and diffuse sunlight with variation of tilt angles from 0° to 45° were studied using a mono crystalline silicon cell. Pyranometer and the solar panel were kept under identical conditions. Energy absorbed by the solar panel in diffuse sunlight was found 0.55% of that received by the Pyranometer under similar conditions showing that mono crystalline silicon solar cell of the type under study was not suitable for use in SHS. Moreover, the gap between the panel and the solid surface below it has significant effects on the efficiency of the solar cell. Further similar study using different kinds of cells- mono crystalline, poly crystalline and amorphous is needed for proper designs of SHS. Optimization of the gap between the panel and the solid surface below it is important for roof-mounted and ground-mounted panels. Key words: Silicon solar cells; Tilt angle; Diffuse light; Home lighting; Monocrystaline. DOI: http://dx.doi.org/10.3329/bjsir.v46i1.8114 Bangladesh J. Sci. Ind. Res. 46(1), 117-122, 2011   


2012 ◽  
Vol 1426 ◽  
pp. 383-387
Author(s):  
Thomas Lanz ◽  
Corsin Battaglia ◽  
Christophe Ballif ◽  
Beat Ruhstaller

ABSTRACTWe investigate the influence of the crystallinity of the absorber layer and parasitic absorption in the doped layers and electrodes on the external quantum efficiency and reflection of microcrystalline silicon (μc-Si:H) solar cells. Using an optical light scattering model we systematically study variations in the crystallinity and validate a simple normalization procedure that allows assessing the gains that can be achieved by reducing the parasitic absorption. The optimization potential is demonstrated with solar cell samples with increased crystallinity and eliminated parasitic absorption.


Sign in / Sign up

Export Citation Format

Share Document