Investigation on Equipment Failure Mode and Causes Using Infra-Red Thermovision Camera Images for High Voltage Electrical Connection

2016 ◽  
Vol 818 ◽  
pp. 86-90
Author(s):  
Amir Hamzah Osman ◽  
Zuraimy Adzis ◽  
Yanuar Z. Arief ◽  
Nor Asiah Muhamad

High voltage (HV) electrical connection hot spot scanning and monitoring is important to ensure the availability, continuity and reliability of electrical supply. The aim of this research work is to investigate HV electrical connection apparatus using infra-red thermovision camera. A database of hot spot images from infra-red thermovision scanning is needed to perform an analysis to ascertain the mode and causes of the hot spot. Eight numbers of Tenaga NasionalBerhad’s (TNB) main intakes (PMU) with different location, environment type, and load were selected to get various data to be formed a hot spot database. The database consist of HV electrical apparatus scanning image using infra-red thermovision camera to investigate the hot spot temperature reading, location and bay in dedicated PMU. The data collected from year 2010 until 2013 were analyzed to ascertain the failure modes of the HV electrical connection apparatus according to TNB condition monitoring unit standards. All objectives were achieved by performing the database, equipment failure mode and causes were ascertained are related to the load (MW) and bad workmanship during erection process. Connection apparatus with high hot spot reading were investigated, repaired or taken out from services if damage, and replaced. Solutions were proposed on the damage electrical HV electrical connection apparatus depends on the source of the problem.

2018 ◽  
Vol 25 (8) ◽  
pp. 2660-2687 ◽  
Author(s):  
Sachin Kumar Mangla ◽  
Sunil Luthra ◽  
Suresh Jakhar

PurposeThe purpose of this paper is to facilitate green supply chain (GSC) managers and planners to model and access GSC risks and probable failures. This paper proposes to use the fuzzy failure mode and effects analysis (FMEA) approach for assessing the risks associated with GSC for benchmarking the performance in terms of effective GSC management adoption and sustainable production.Design/methodology/approachInitially, different failure modes are defined using FMEA analysis, and in order to decide the risk priority, the risk priority number (RPN) is determined. Such priority numbers are typically acquired from the judgment decisions of experts that could contain the element of vagueness and imperfection due to human biases, and it may lead to inaccuracy in the process of risk assessment in GSC. In this study, fuzzy logic is applied to conventional FMEA to overcome the issues in assigning RPNs. A plastic manufacturer GSC case exemplar of the proposed model is illustrated to present the authenticity of this method of risk assessment.FindingsResults indicate that the failure modes, given as improper green operating procedure, i.e. process, operations, etc. (R6), and green issues while closing the loop of GSC (R14) hold the highest RPN and FRPN scores in classical as well as fuzzy FMEA analysis.Originality/valueThe present research work attempts to propose an evaluation framework for risk assessment in GSC. This paper explores both sustainable developments and risks related to efficient management of GSC initiatives in a plastic industry supply chain context. From a managerial perspective, suggestions are also provided with respect to each failure mode.


Author(s):  
Liangbin Xu ◽  
Guoming Chen

The offshore minimum structures are widely applied in the development of margin oilfield because of their simplicity in fabrication, low initial investment and fast-track schedule. However, they would suffer large dynamic response under exciting loads such as seismic and ice loads, which might lower their service safety. The paper is focused on robust reliability assessment for the offshore minimum structures under dynamic loads by considering first-exceeding failure mode, fatigue failure mode. The robust reliability of offshore structure is a measure of its resistance to the uncertainties, and it suits very much to the condition that the information and data are scarce. The multi-level fortification for ice-resistant offshore minimum structures is presented in this paper, that is, the structure should not be defective under normal ice condition, repairable under heavy ice condition and not collapse under the heaviest ice condition. A numeric calculation method of robust reliability and several robust reliability dynamic models for offshore minimum structures are put forward in this paper, in which plastic collapse, fatigue, and fracture are dealt with. The interaction between the different failure modes under these loads is also considered in the paper. Based on research work mentioned above, the comprehensive safety assessment for the offshore minimum structures would be more easily realized under dynamic loads such as ice loads, seismic loads. Finally, the example is given.


2012 ◽  
Vol 229-231 ◽  
pp. 819-823
Author(s):  
Shi Ze Huang ◽  
Qi Yi Guo ◽  
Jing Tai Hu ◽  
Min Juan Zhang ◽  
Ya Jie He

After introducing the new low-voltage protective electrical apparatus—Control and Protective Switching Device (CPS), there came to the importance and social benefits of its reliability. According to the study on CPS’s operation characteristics and failure modes, along with the current national standard and related industry standard, the two reliability indexes were proposed to measure CPS’s reliability for the first time, and the reliability compliance test plans were also provided. All the study did provide a reference for the reliability research work of CPS.


Kybernetes ◽  
2019 ◽  
Vol 48 (9) ◽  
pp. 1913-1941 ◽  
Author(s):  
Mohamadreza Mahmoudi ◽  
Hannan Amoozad Mahdiraji ◽  
Ahmad Jafarnejad ◽  
Hossein Safari

Purpose The purpose of this paper is to identify critical equipment by dynamically ranking them in interval-valued intuitionistic fuzzy (IVIF) circumstances. Accordingly, the main drawbacks of the conventional failure mode and effects analysis (FMEA) are eliminated. To this end, the authors have presented the interval-valued intuitionistic fuzzy condition-based dynamic weighing method (IVIF-CBDW). Design/methodology/approach To realize the objective, the authors used the IVIF power weight Heronian aggregation operator to integrate the data extracted from the experts’ opinions. Moreover, the multi-attributive border approximation area comparison (MABAC) method is applied to rank the choices and the IVIF-CBDW method to create dynamic weights appropriate to the conditions of each equipment/failure mode. The authors proposed a robust FMEA model where the main drawbacks of the conventional risk prioritization number were eliminated. Findings To prove its applicability, this model was used in a case study to rank the equipment of a HL5000 crane barge. Finally, the results are compared with the traditional FMEA methods. It is indicated that the proposed model is much more flexible and provides more rational results. Originality/value In this paper, the authors have improved and used the IVIF power weight Heronian aggregation operator to integrate information. Furthermore, to dynamically weigh each equipment (failure mode), they presented the IVIF-CBDW method to determine the weight of each equipment (failure mode) based on its equipment conditions in the O, S and D criteria and provide the basis for the calculation. IVIF-CBDW method is presented in this study for the first time. Moreover, the MABAC method has been performed, to rank the equipment and failure mode. To analyze the information, the authors encoded the model presented in the robust MATLAB software and used it in a real sample of the HL5000 crane barge. Finally, to evaluate the reliability of the model presented in the risk ranking and its rationality, this model was compared with the conventional FMEA, fuzzy TOPSIS method, the method of Liu and the modified method of Liu.


2011 ◽  
Vol 110-116 ◽  
pp. 2969-2975 ◽  
Author(s):  
N.S. Bhangu ◽  
Rupinder Singh ◽  
G.L. Pahuja

Failure Mode and Effect Analysis (FMEA) has a well deserved reputation for systematic and thorough evaluation of failures at the system, sub-system or component level in all manufacturing and processing sectors. These organizations are looking for the final product to be “safe and reliable”. FMEA helps designers to identify and eliminate/control dangerous failure modes, minimizing damage to the system and its users. This paper, as an extension to the prior research work, introduces an insight into the reasons of failure and its effects in a thermal power plant opted for the case study, based on conceptual designs in context of FMEA. The analysis takes into account preparation of appropriate diagnostic and maintenance procedures with the aim of enhancement of thermal plant reliability. The FMEA technique used may be helpful for the design and maintenance departments to curtail the downtime of the plant.


Author(s):  
Cha-Ming Shen ◽  
Tsan-Cheng Chuang ◽  
Jie-Fei Chang ◽  
Jin-Hong Chou

Abstract This paper presents a novel deductive methodology, which is accomplished by applying difference analysis to nano-probing technique. In order to prove the novel methodology, the specimens with 90nm process and soft failures were chosen for the experiment. The objective is to overcome the difficulty in detecting non-visual, erratic, and complex failure modes. And the original idea of this deductive method is based on the complete measurement of electrical characteristic by nano-probing and difference analysis. The capability to distinguish erratic and invisible defect was proven, even when the compound and complicated failure mode resulted in a puzzling characteristic.


Author(s):  
Martin Versen ◽  
Dorina Diaconescu ◽  
Jerome Touzel

Abstract The characterization of failure modes of DRAM is often straight forward if array related hard failures with specific addresses for localization are concerned. The paper presents a case study of a bitline oriented failure mode connected to a redundancy evaluation in the DRAM periphery. The failure mode analysis and fault modeling focus both on the root-cause and on the test aspects of the problem.


Author(s):  
Bhanu P. Sood ◽  
Michael Pecht ◽  
John Miker ◽  
Tom Wanek

Abstract Schottky diodes are semiconductor switching devices with low forward voltage drops and very fast switching speeds. This paper provides an overview of the common failure modes in Schottky diodes and corresponding failure mechanisms associated with each failure mode. Results of material level evaluation on diodes and packages as well as manufacturing and assembly processes are analyzed to identify a set of possible failure sites with associated failure modes, mechanisms, and causes. A case study is then presented to illustrate the application of a systematic FMMEA methodology to the analysis of a specific failure in a Schottky diode package.


2020 ◽  
Vol 13 (3) ◽  
pp. 381-393
Author(s):  
Farhana Fayaz ◽  
Gobind Lal Pahuja

Background:The Static VAR Compensator (SVC) has the capability of improving reliability, operation and control of the transmission system thereby improving the dynamic performance of power system. SVC is a widely used shunt FACTS device, which is an important tool for the reactive power compensation in high voltage AC transmission systems. The transmission lines compensated with the SVC may experience faults and hence need a protection system against the damage caused by these faults as well as provide the uninterrupted supply of power.Methods:The research work reported in the paper is a successful attempt to reduce the time to detect faults on a SVC-compensated transmission line to less than quarter of a cycle. The relay algorithm involves two ANNs, one for detection and the other for classification of faults, including the identification of the faulted phase/phases. RMS (Root Mean Square) values of line voltages and ratios of sequence components of line currents are used as inputs to the ANNs. Extensive training and testing of the two ANNs have been carried out using the data generated by simulating an SVC-compensated transmission line in PSCAD at a signal sampling frequency of 1 kHz. Back-propagation method has been used for the training and testing. Also the criticality analysis of the existing relay and the modified relay has been done using three fault tree importance measures i.e., Fussell-Vesely (FV) Importance, Risk Achievement Worth (RAW) and Risk Reduction Worth (RRW).Results:It is found that the relay detects any type of fault occurring anywhere on the line with 100% accuracy within a short time of 4 ms. It also classifies the type of the fault and indicates the faulted phase or phases, as the case may be, with 100% accuracy within 15 ms, that is well before a circuit breaker can clear the fault. As demonstrated, fault detection and classification by the use of ANNs is reliable and accurate when a large data set is available for training. The results from the criticality analysis show that the criticality ranking varies in both the designs (existing relay and the existing modified relay) and the ranking of the improved measurement system in the modified relay changes from 2 to 4.Conclusion:A relaying algorithm is proposed for the protection of transmission line compensated with Static Var Compensator (SVC) and criticality ranking of different failure modes of a digital relay is carried out. The proposed scheme has significant advantages over more traditional relaying algorithms. It is suitable for high resistance faults and is not affected by the inception angle nor by the location of fault.


Sign in / Sign up

Export Citation Format

Share Document