Numerical Investigation of Turbulent Magnetic Nanofluid Flow inside Straight Channels

2016 ◽  
Vol 819 ◽  
pp. 382-391 ◽  
Author(s):  
Nor Azwadi Che Sidik ◽  
Mohammed Raad Abdulwahab

A numerical study using computational fluid dynamics method with an approach of single phase has been presented in order to determine the effects of the concentration of the nanoparticles and flow rate on the convective heat transfer and friction factor in turbulent regime flowing through three different straight channels (straight, circular and triangular) with different Reynolds number (5000 ≤ Re ≤ 20000) using constant applied heat flux. The nanofluid was used consist of Fe3O4 magnetic nanoparticles with average diameter of (13nm) dispersed in water with four volume fraction (0, 0.2, 0.4, 0.6%). The results revealed that as volume fraction and Reynolds number increase Nusselt number increase and the heat transfer rate in circular cross section tube is better than that in square and triangular cross section channels.

Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 895
Author(s):  
Mohammad Abdollahzadeh Jamalabadi

The excellent thermal characteristics of nanoparticles have increased their application in the field of heat transfer. In this paper, a thermophysical and geometrical parameter study is performed to minimize the total entropy generation of the viscoelastic flow of nanofluid. Entropy generation with respect to volume fraction (<0.04), the Reynolds number (20,000–100,000), and the diameter of the microchannel (20–20,000 μm) with the circular cross-section under constant flux are calculated. As is shown, most of the entropy generation owes to heat transfer and by increasing the diameter of the channel, the Bejan number increases. The contribution of heat entropy generation in the microchannel is very poor and the major influence of entropy generation is attributable to friction. The maximum quantity of in-channel entropy generation happens in nanofluids with TiO2, CuO, Cu, and Ag nanoparticles, in turn, despite the fact in the microchannel this behavior is inverted, the minimum entropy generation occurs in nanofluids with CuO, Cu, Ag, and TiO2 nanoparticles, in turn. In the channel and microchannel for all nanofluids except water-TiO2, increasing the volume fraction of nanoparticles decreases entropy generation. In the channel and microchannel the total entropy generation increases by augmentation the Reynolds number.


2011 ◽  
Vol 243-249 ◽  
pp. 4935-4938
Author(s):  
Li Li ◽  
Xiao Ze Du

The heat transfer characteristic through periodical variable cross-section passage is studied with numerical scheme. The results in multi-period variable cross-section channel show that the heat transfer enhancement can be obtained by forming flow destabilization at large Reynolds number. The parameters include pressure, velocity, temperature in the channel are symmetric about central line at low Reynolds number, then change to asymmetric at high Reynolds number. The variations occur firstly at the downstream near outlet of the channel and move upstream, which could improve the fluid mixing to increase the enhancement of heat transfer in channel.


2016 ◽  
Vol 819 ◽  
pp. 74-77
Author(s):  
Mohamad Nor Musa ◽  
Mohamad Faizal Fauzi

Jet impingement is one of cooling method used in order to achieve high heat transfer coefficient and widely used in industry applications such as drying of textile and film, glass and plastic sheets, cooling of electronic equipment, and heat treatment of metals. In this research, it focused on the effectiveness of the jet impingement cooling system on the convex surface based on mass blowing rate and nozzle exit to surface parameters. The scope of experiment research encompasses are convex surface made of aluminum alloy and diameter 12.5cm. For mass blowing rate parameters, it use ʋjet = 1.98m/s, 3.03m/s, 4.97m/s and 6.00m/s which has Reynolds number range from 643 until 1946. Nozzle exit to surface distance,s/d = 4.0, 8.0 and 12.0. In this experiment model, a major components that involved are a compressor, nozzle, convex surface model, K thermocouple and heater. For the result of the experiment, it is based on the data obtain through a heat transfer coefficient and Nusselt number which the plotted graph focus on the space spacing and Reynolds number parameters. For the graph Nusselt number versus s/d at stagnation point c/d=0, it shown that when the Reynolds number increase, the Nusselt number also increase. In term of effectiveness, the s/d=12.0 has a good effectiveness jet impingement cooling system. For the graph of Nusselt number versus Reynolds at stagnation point, c/d=0, as Reynolds number increase, the Nusselt number increase too. From this experiment the better cooling effect is at Reynolds number, Re=1946. Thus, it can conclude that, effectiveness for jet impingement cooling system on the convex surface occurs at the highest Reynolds number.


2018 ◽  
Vol 24 (8) ◽  
pp. 1
Author(s):  
Kadhum Audaa Jehhef

An experimental and numerical investigation of the effect of using two types of nanofluids with suspending of (Al2O3 and CuO) nanoparticles in deionized water with a volume fraction of (0.1% vol.), in addition to use three types of fin plate configurations of (smooth, perforated, and dimple plate) to study the heat transfer enhancement characteristics of commercial fin plate heat sink for cooling computer processing unit. All experimental tests under simulated conditions by using heat flux heater element with input power range of (5, 16, 35, 70, and 100 W). The experimental parameters calculated are such as water and nanofluid as coolant with Reynolds number of (7000, 8000, 9400 and 11300); the air is blown in the inlet duct across the heat sink with Reynolds number of (10500, 12300, 14200 and 16000). The distance fin-to-fin is kept constant at (2.00 mm), and the channel employed in this work has a square cross-section of (7 cm) inside. It was observed that the average effectiveness and Nusselt number of the nanofluids are higher compared with those of using conventional liquid cooling systems. However, the perforated fin plate showed higher air heat dissipation than the other configuration plate fin employed in this study. The experimental results were supported by numerical results which gave a good indication to heat transfer enhancement in studied ranges.  


1986 ◽  
Vol 108 (1) ◽  
pp. 40-47 ◽  
Author(s):  
E. M. Sparrow ◽  
G. M. Chrysler

Experiments were performed to determine the local heat transfer characteristics of bends of circular cross section to which fluid was delivered either via a sharp-edged inlet or via a hydrodynamic development tube. The naphthalene sublimation technique, a mass transfer method, was used to facilitate the experiments. Bends subtending turning angles of 30, 60, and 90 deg were investigated, and the Reynolds number was varied between 5000 and 100,000. It was found that the local heat transfer coefficients at the outside of the bend were, for the most part, larger than those at the inside of the bend, but the deviations decreased as the Reynolds number increased. The streamwise distributions of the local transfer coefficient were markedly affected by the inlet condition; those for the sharp-edged inlet exhibited a universal shape, while the shapes of those for the tube-fed inlet depended both on the Reynolds number and on whether the distribution corresponded to the inside or the outside of the bend. In addition, the distributions for the case of the sharp-edged inlet exhibited higher local maxima and approached the fully developed regime more rapidly than did those for the tube-fed inlet. The heat transfer results were supplemented by flow visualization.


2011 ◽  
Vol 464 ◽  
pp. 528-531 ◽  
Author(s):  
Zhi Yong Ling ◽  
Tao Zou ◽  
Jian Ning Ding ◽  
Guang Gui Cheng ◽  
Peng Fei Fu ◽  
...  

A numerical study on the convective heat transfer characteristics of Cu-water nanofluid under the laminar flow condition was performed. The results show that the convective heat transfer coefficient increases with the increase of the volume fraction of the nanoparticles and the Reynolds number. There is a significant difference between the numerical simulation result and the result calculated from the Shah equation in the entrance region, but a small difference in full development areas. The numerical results agree well with that obtained from the Xuan equation when the Reynolds number and the volume fraction of the nanoparticles are small, but the errors between them increase as the increase of the Reynolds number and the volume fraction of nanoparticles.


2017 ◽  
Vol 7 (2) ◽  
pp. 1496-1503
Author(s):  
K. Boukerma ◽  
M. Kadja

In this work, a numerical study has been performed on the convective heat transfer of Al2O3/Water-Ethylene Glycol (EG) and CuO/(W-EG) nanofluids flowing through a circular tube with circumferentially non-uniform heating (constant heat flux) under the laminar flow condition. We focus on the study of the effect of EG-water mixtures as base fluids with mass concentration ranging from 0% up to 100% ethylene glycol on forced convection. The effect on the flow and the convective heat transfer behavior of nanoparticle types, their volume fractions (φ=1-5%) and Reynolds number are also investigated. The results obtained show that the highest values of the average heat transfer coefficient is observed between 40% and 50% of EG concentration. The average Nusselt number increases with the increase in EG concentration in the base fluid, and the increase in the Reynolds number and volume fraction. For concentrations of EG above 60%, and for all volume fractions, the increase of thermal performance of nanofluids became inversely proportional to the increase of Reynolds number. In addition, CuO/(W-EG) nanofluids show the best thermal performance compared with Al2O3/ (W-EG) nanofluids.


2019 ◽  
Vol 30 (5) ◽  
pp. 2439-2465 ◽  
Author(s):  
Vahid Jaferian ◽  
Davood Toghraie ◽  
Farzad Pourfattah ◽  
Omid Ali Akbari ◽  
Pouyan Talebizadehsardari

Purpose The purpose of this study is three-dimensional flow and heat transfer investigation of water/Al2O3 nanofluid inside a microchannel with different cross-sections in two-phase mode. Design/methodology/approach The effect of microchannel walls geometry (trapezoidal, sinusoidal and stepped microchannels) on flow characteristics and also changing circular cross section to trapezoidal cross section in laminar flow at Reynolds numbers of 50, 100, 300 and 600 were investigated. In this study, two-phase water/Al2O3 nanofluid is simulated by the mixture model, and the effect of volume fraction of nanoparticles on performance evaluation criterion (PEC) is studied. The accuracy of obtained results was compared with the experimental and numerical results of other similar papers. Findings Results show that in flow at lower Reynolds numbers, sinusoidal walls create a pressure drop in pure water flow which improves heat transfer to obtain PEC < 1. However, in sinusoidal and stepped microchannel with higher Reynolds numbers, PEC > 1. Results showed that the stepped microchannel had higher pressure drop, better thermal performance and higher PEC than other microchannels. Originality/value Review of previous studies showed that existing papers have not compared and investigated nanofluid in a two-phase mode in inhomogeneous circular, stepped and sinusoidal cross and trapezoidal cross-sections by considering the effect of changing channel shape, which is the aim of the present paper.


Sign in / Sign up

Export Citation Format

Share Document