Boron Compounds Counteracts Oxidative Stress Mediated Genotoxicity Induced by Fe3O4 Nanoparticles In Vitro

2016 ◽  
Vol 835 ◽  
pp. 84-90 ◽  
Author(s):  
Hasan Türkez ◽  
Erdal Sönmez ◽  
Abdulgani Tatar

Due to rapid growing of nanotechnology, it is currently being used in many areas including biotechnology, electronics, drug delivery systems, cosmetics, material science and biosensors. Oxidative stress is considered as main cause behind the toxicity of nanoparticles (NPs). Recent reports indicate that boron is effective in protecting cells or organisms against oxidative damages by enhancing antioxidant defense mechanisms. However, protective role of boron compounds in nanotoxicity is not investigated yet. Therefore we assessed the potential protective role of boric acid (BA) and borax (BX) against the toxic responses of nano-Fe3O4 particles (IO NPs) in cultured human whole blood cells. Our results showed that IO NPs induced genotoxicity in human lymphocytes demonstrated by sister chromatid exchange (SCE) and 8-hydroxy-2′-deoxyguanosine (8-OH-dG) assays. Again, IO NPs caused decreases of total antioxidant capacity (TAC) and decreases of total oxidative stress (TOS) levels in vitro. Co-application of boric acid and borax (2.5 to 10 ppm) into the cell cultures significantly ameliorated genotoxicity and oxidative stress caused by IO NPs. In a conclusion, this study is the first report revealing that BA and BX significantly protected human blood cells from the toxicity of IO NPs, which is mediated through the generation of oxidative stress and depletion of antioxidant capacity.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jing-Shang Wang ◽  
Ye Huang ◽  
Shuping Zhang ◽  
Hui-Jun Yin ◽  
Lei Zhang ◽  
...  

Hyperglycemia fluctuation is associated with diabetes mellitus (DM) complications when compared to persistent hyperglycemia. Previous studies have shown that paeoniflorin (PF), through its antiapoptosis, anti-inflammation, and antithrombotic properties, effectively protects against cardiovascular and cerebrovascular disease. However, the mechanism underlying the protection from PF against vascular injuries induced by hyperglycemia fluctuations remains poorly understood. Herein, we investigated the potential protective role of PF on human umbilical vein endothelial cells (HUVECs) subjected to intermittent glucose levels in vitro and in DM rats with fluctuating hyperglycemia in vivo. A remarkable increased apoptosis associated with elevated inflammation, increased oxidative stress, and high protein level of PKCβ1 was induced in HUVECs by intermittently changing glucose for 8 days, and PF recovered those detrimental changes. LY333531, a potent PKCβ1 inhibitor, and metformin manifested similar effects. Additionally, in DM rats with fluctuating hyperglycemia, PF protected against vascular damage as what has been observed in vitro. Taken together, PF attenuates the vascular injury induced by fluctuant hyperglycemia through oxidative stress inhibition, inflammatory reaction reduction, and PKCβ1 protein level repression, suggesting its perspective clinical usage.


2011 ◽  
Vol 36 (8) ◽  
pp. 1546-1557 ◽  
Author(s):  
Yassine Chtourou ◽  
Khaled Trabelsi ◽  
Hamadi Fetoui ◽  
Ghada Mkannez ◽  
Héla Kallel ◽  
...  

Author(s):  
DULCE L. AMBRIZ-PEREZA ◽  
ROSALIO RAMOS-PAYANB ◽  
MIGUEL A. ANGULO-ESCALANTEA ◽  
JOSEFINA LEON-FELIXA ◽  
FRANCISCO DELGADO-VARGASB ◽  
...  

2010 ◽  
Vol 30 (6) ◽  
pp. 515-519
Author(s):  
Lokman Alpsoy ◽  
Elif Kotan ◽  
Abdulgani Tatar ◽  
Guleray Agar

Aflatoxins have been shown to be hepatotoxic, carcinogenic, mutagenic and teratogenic to different species of animals. Besides, at low concentrations, Selenium (Se4+) is antimutagenic and anticarcinogenic while it is toxic, mutagenic and carcinogenic at high concentrations. In this study, we aimed to evaluate the effect of Se4+ against aflatoxin GAFG1 (AFG1) on blood cultures in relation to induction of sister chromatid exchange (SCE). The results showed that at 0.4 and 0.8 parts per million (ppm) concentration of AFG1, the frequency of SCE increased in cultured human lymphocytes. When different concentration of Se4+ (0.08 and 8 ppm) were added to AFG1, the frequencies of SCE decreased. Howewer, when 800 ppm concentration of Se4+ together with 0.08 ppm AFG1 were added to cell division inhibited in the cultures. Results suggested that Se4+ could effectively inhibit AFG1-induced SCE. Besides, the protective role of Se4+ against AFG1-induced SCE is probably related to its doses.


2016 ◽  
Vol 11 (8) ◽  
pp. 1934578X1601100 ◽  
Author(s):  
Wojciech Koch ◽  
Wirginia Kukula-Koch ◽  
Marcin Dziedzic ◽  
Kazimierz Głowniak ◽  
Yoshinori Asakawa

Zingiber officinale (Zingiberaceae) is a common spice and a medicine widely cultivated in tropical and subtropical climate around the globe, which contains both precious polyphenols and terpenes in its extracts. The ubiquity of ginger in a variety of foods encouraged the authors to assess the influence of thermal processing and digestion of the plant material on its antioxidant capacity. The obtained results of DPPH assay showed marked differences in the antioxidant potential of the processed samples, in comparison with fresh ginger rhizomes. Autoclave and microwave heating procedures were found to evoke the mildest decomposition of the antioxidants and increase the antioxidant capacity of the plant (from IC50 of 210±10 for a fresh rhizome to ca 160±16 μg/mL for the former, and to 150±18 for the latter technique), whereas frying and boiling for different durations significantly deteriorated the antiradical potential up to IC50 = 940±36 μg/mL. Mouth and stomach digestion decreased the antioxidant potential of the extracts even to ca. 1000±47 μg/mL. A protective role of saliva towards the antioxidant compounds against hydrochloric acid and pepsin activities has been proven. A marked deterioration in antioxidant capacity in digested rhizomes may shed new light on the actual absorption of consumed polyphenols with food products.


2011 ◽  
Vol 28 (7) ◽  
pp. 648-654 ◽  
Author(s):  
Hasan Türkez ◽  
Elanur Aydın

Ascorbic acid (AA), known as vitamin C, has important antioxidant and metabolic functions, making its incorporation into the human diet essential. On the other hand, imazalil (IMA), a commonly used fungicide in both agricultural and clinical domains is suspected to produce very serious toxic effects in vertebrates. In this study, the antigenotoxic effects of AA were studied against the genotoxic damage induced by IMA on cultured human lymphocytes using chromosomal aberration (CA) and sister chromatid exchange (SCE) as genetic end points. Human peripheral lymphocytes were treated in vitro with varying concentrations of AA (25, 50, 100, 200, and 400 μg/ml), tested in combination with IMA (336 mg/L). AA alone was not genotoxic and when combined with IMA treatment, reduced the frequencies of CAs and SCEs. A clear dose-dependent decrease in the genotoxic damage of IMA was observed, suggesting a genoprotective role of AA. In conclusion, the preventive role of AA in alleviating IMA-induced DNA damage was indicated for the first time in the present study.


2021 ◽  
Vol 75 (1) ◽  
pp. 889-895
Author(s):  
Małgorzata Lewicka ◽  
Magdalena Zawadzka ◽  
Gabriela Henrykowska ◽  
Maciej Rutkowski ◽  
Andrzej Buczyński

Abstract Objectives The article presents the results of an in vitro study aimed at identifying changes in parameters of oxidative stress – concentration of malondialdehyde (MDA), enzymatic activity of superoxide dismutase (SOD-1) and protective antioxidant role of melatonin (MLT) during the exposure of blood platelets to electromagnetic radiation (EMR) emitted by monitors. Methods Platelets were exposed to an EMR for 30- and 60 min. generated by monitors (1 kHz frequency, 220 V/m intensity). In each sample the level of SOD-1 activity and concentration of MDA were determined. Results The MDA concentration increased significantly after 30-and 60-min. irradiation, as compared to control values (2.53 vs 1.36; 3.64 vs 1.36 nmol/109 blood platelets) and after the addition of MLT it decreased (2.53 vs 1.55; 3.64 vs 1.12 nmol/109 blood platelets). The activity of SOD-1 increased significantly compared to control values after 30 min. and 60 min. of exposure to EMR (1.97vs 0.75; 2.08 vs 0.75 U/g of protein), and significantly decreased after the addition of MLT only in samples exposed for 60 min. (2.08 vs 0.95 U/g of protein). Discussion The results demonstrated the possibly negative effect of EMR on oxygen metabolism of blood platelets and indicated a possible protective role of melatonin in this process.


2013 ◽  
Vol 29 (1) ◽  
pp. 175-183 ◽  
Author(s):  
Giovana Reche Dalazen ◽  
Melaine Terra ◽  
Carlos Eduardo Diaz Jacques ◽  
Juliana G. Coelho ◽  
Raylane Freitas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document