Studies on Notch Tensile Properties of Ti-5Al-2.5Sn ELI at Cryogenic Temperature for Hydrogen Embrittlement Effect

2018 ◽  
Vol 877 ◽  
pp. 39-43
Author(s):  
T. Antony Prabhu ◽  
N. Murugesan ◽  
S. Ingersol ◽  
D.P. Sudhakar ◽  
P.V. Venkitakrishnan

Ti-5Al-2.5Sn alloy is widely used in aerospace applications due to its high specific strength, low coefficient of thermal expansion and good corrosion resistance. Presence of interstitial elements in the alloy has some significant effects on its properties. However the high notch toughness and cryogenic ductility attracts the usage of Ti-5Al-2.5Sn for usage at cryogenic temperatures even at 20K. For hydrogen embrittlement studies and for investigating notch sensitivity of Ti-5Al-2.5Sn alloy, the notched and smooth specimens from ELI grade of Ti-5Al-2.5Sn alloy were subjected to LH2exposure and tensile test at 20K (-253°C) and at 77K (-196°C). The tensile properties obtained from different specimens were compared and analyzed. Also the notch to smooth tensile strength ratio (NSR) were compared and analysed. The obtained NSR was above unity which confirms the low notch brittleness. The tensile strength values between LH2exposed and unexposed specimen at 20K and 77K were compared and it revealed greater compatibility of Ti-5Al-2.5Sn-ELI with liquid hydrogen environment.

2015 ◽  
Vol 830-831 ◽  
pp. 207-210 ◽  
Author(s):  
T. Antony Prabhu ◽  
N. Murugesan ◽  
K. Thomas Tharian ◽  
S. Ingersol

Ti-6Al-4V alloy is widely used in Aerospace applications owing to its high specific strength, low coefficient of thermal expansion and good corrosion resistance. Presence of interstitial elements in the alloy has some significant effects on its properties. However the poor notch toughness and cryogenic ductility restricts the usage of Ti-6Al-4V for temperatures lower than 77 K (-196 °C). The Extra Lower Interstitial grade alloy was developed in order to improve the notch toughness and cryogenic ductility of the Ti-6Al-4V alloy. In this refined grade, the interstitials, Oxygen and Carbon are controlled to a maximum limit of 0.12% and 0.08% respectively as compared to a maximum of 0.2% and 0.1% of standard Ti-6Al-4V alloy. In this study, the ELI grade of Ti-6Al-4V rods from three different manufacturing sources were subjected to tensile test at liquid hydrogen temperature at 20 K (-253 oC). The tensile properties obtained are compared and analyzed. The obtained ductility at 20 K is observed to have close relation with the chemical composition and interstitial content and compared with the Ti5Al2.5Sn-ELI which is ideally suitable for low temperatures upto 20 K, owing to its single phase HCP structure. A correlation has been made between the ductile properties and microstructure. By close control of chemical composition and mechanical working, Ti6Al4V-ELI can be used for temperatures lower than 77 K (-196 oC), which is otherwise is forbidden. This paper details the test data obtained from three different compositions of Ti6Al4V-ELI at 20 K, which enables the usage of this material for temperatures lower than 77 K (-196 °C) upto 20 K.


Author(s):  
Anil K. Srivastava ◽  
Jon Iverson

Titanium and its alloys have seen increased utilization in military and aerospace applications due to combination of high specific strength, toughness, corrosion resistance, elevated-temperature performance and compatibility with polymer composite materials. Titanium alloys are difficult to machine due to their inherent low thermal conductivity and higher chemical reactivity with other materials at elevated temperatures. In general, temperature related machining difficulties are encountered at production speeds in the range of 60 m/min and high-speed machining of these alloys has created considerable interest to researchers, tool manufacturers and end users. This paper provides recent results obtained during turning operation with the aim of improving machinability of titanium alloys. Several tests have been conducted using (i) micro-edge prep geometry of the inserts, (ii) ultra-hard PVD coated, and (iii) nano-layered coated inserts and the effects of speeds and feeds during turning of Ti-6Al-4V titanium alloy are discussed. The initial tests have been conducted under orthogonal (2-D) cutting conditions with no coolant application. Based on these results, several oblique cutting (3-D) tests have been designed and conducted to study the effect of various types of ultra-hard and nano-layered coatings at higher cutting speeds under flooded coolant conditions. The effects of speed and feed on cutting force and tool wear are presented in this paper.


2008 ◽  
Author(s):  
T. Ogata ◽  
U. (Balu) Balachandran ◽  
Kathleen Amm ◽  
David Evans ◽  
Eric Gregory ◽  
...  

2018 ◽  
Vol 7 (3.12) ◽  
pp. 579
Author(s):  
Hemanth Raju.T ◽  
V S.Ramamurthy

Composite materials are widely used in variety of applications such as aerospace, automotive and structural components resulting in savings of material and energy. Particulate reinforced Aluminium metal matrix composite materials which are having desirable properties such as high specific stiffness, high specific strength, high coefficient of thermal expansion, increased fatigue resistance and superior dimensional stability compared to unreinforced alloys. In the present work an attempt has been made to develop composites using Al 6061 as a matrix material reinforced with Zircon particulates using stir casting technique. The Zircon particulates were varied in steps of 0 %, 3%, 6%, 9% and 12%. The Specimens were prepared as per the ASTM standards. The prepared composites were characterized by microstructural studies using optical microscope and tensile strength and hardness properties were evaluated. Zircon particles were observed to refine the grains and were distributed homogeneously in the aluminium matrix at 9% of Zircon. The tensile and hardness properties were higher in case of composites when compared to unreinforced Al 6061 matrix. Also increasing addition level of Zircon has resulted in further increase in both tensile strength and hardness values and optimum value was obtained at 9% of Zircon. 


Alloy Digest ◽  
1962 ◽  
Vol 11 (12) ◽  

Abstract REVERE No. 454 is a manganese bronze having high tensile strength and good corrosion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on forming, heat treating, machining, and joining. Filing Code: Cu-123. Producer or source: Revere Copper and Brass Inc..


Author(s):  
Subhash K. Naik ◽  
James K. Sutter ◽  
Widen Tabakoff ◽  
Robert G. Siefker ◽  
Harold S. Haller ◽  
...  

Polymer matrix composites (PMCs) are attractive for use in propulsion engine components due to their high specific strength. The use of composites could be even more advantageous if the sand erosion life of the component were extended, thereby reducing maintenance costs. NASA Glenn Research Center (NASA GRC) and Rolls-Royce Corporation have developed erosion resistant coatings that can extend PMC component life and are applicable to current available and advanced high temperature PMCs. This paper describes the performance of SANPRES and SANRES, two similar erosion resistant coating systems that were subjected to engine test conditions on Rolls-Royce AE 3007 engine bypass vanes.


2015 ◽  
Vol 813-814 ◽  
pp. 208-212
Author(s):  
S. Ghanaraja ◽  
K.L. Vinuth Kumar ◽  
K.S. Ravikumar ◽  
B.M. Madhusudan

The Synthesis of aluminium matrix composites is receiving considerable emphasis in meeting the requirements of various industries. Due to the desired properties such as low weight, high specific strength, good corrosion resistance and excellent wear resistance, they have received a great interest in the recent years. Metal-matrix composites (MMCs) based on aluminium and magnesium has emerged as an important class of materials and Al2O3can be considered as ideal reinforcements, due to their high strength, high aspect ratio and thermo-mechanical properties. The objective of this work is to reinforce Al 1100-Mg alloy with different wt% of Al2O3(0, 3, 6, 9 and 12) was added by melt stirring method and Extrusion is carried out (extrusion ratio of 12.25) for the same alloy and composites. Mechanical property like hardness and tensile properties have been investigated for cast and extruded of base alloy and composites.


1988 ◽  
Vol 134 ◽  
Author(s):  
J. Im ◽  
P.A. Percha ◽  
D.S. Yeakle

ABSTRACTThe tensile properties of poly (paraphenylene benzobisoxazole) or PBO fiber strands were studied using two variables: gage length and the number of twists per inch. The gage length was varied from 1 to 10 inches with 2 twists of the fiber per inch. The effect of the number of twists per inch was studied by varying the number of twists from zero to 10 along a 5-inch gage length. The trends of tensile strength and modulus due to these variables were established and appropriate explanations of these behaviors are provided.The coefficient of thermal expansion (CTE) was studied on bare strands of PBO and Kevlar 49 (a product of Du Pont de Nemours & Co.) fibers, using a Du Pont 943 Thermomechanical Analyzer (TMA) equipped with a film and fiber tension assembly. The axial CTE of both fibers exhibited a dependence on the small dead load employed to keep the fibers straight. Kevlar 49 fiber, when wet, attained a much less negative value of CTE than when dry. In contrast, PBO fiber absorbed very little moisture, and the CTE remained unchanged.


2015 ◽  
Vol 364 ◽  
pp. 165-173
Author(s):  
Carlos Roberto Grandini

Ti and its alloys are widely used as biomaterials. Their main properties are excellent corrosion resistance, relatively low elastic modulus, high specific strength, and good biocompatibility. The development of new Ti alloys with properties favorable for use in the human body is desired. To this end, Ti alloys with Mo, Nb, Zr, and Ta are being developed, because these elements do not cause cytotoxicity. The presence of interstitial elements (such as oxygen and nitrogen) induces strong changes in the elastic properties of the material, which leads to hardening or softening of the alloy. By means of anelastic spectroscopy, we are able to obtain information on the diffusion of these interstitial elements present in the crystalline lattice. In this paper, the effect of oxygen on the anelastic properties of some binary Ti-based alloys was analyzed with anelastic spectroscopy. The diffusion coefficients, pre-exponential factors, and activation energies were calculated for oxygen and nitrogen in these alloys.


2016 ◽  
Vol 849 ◽  
pp. 317-320
Author(s):  
Meng Qi Yan ◽  
Kai Li ◽  
Yu Hui Wang ◽  
Wang Feng Zhang

TC4 titanium alloys have been extensively used in the aerospace engineering due to the high specific strength, high temperature resistance and good corrosion resistance. However, unsuitable forging methods will cause unqualified mechanical properties in the height direction of forgings. The microstructure and microtexture of the forgings after two forging processes with different upsetting and drawing times were investigated by optical microscopy (OM) and electron back scattering diffraction (EBSD) technique. The results showed that bimodal microstructure and weak basal {0002} texture can be obtained after forging. With the increase of upsetting and drawing times, lamellar α were curved and coarsen, basal {0002} texture were enhanced, and the special 60°<11-20> preferred orientation between lamellar α phase due to Burgers relationship was avoided. The modification of microtexture and grain boundary distributions can improve the strength of TC4 titanium alloy forging in the height direction.


Sign in / Sign up

Export Citation Format

Share Document