Monitoring and Analysis for Air Defense Shelters in Freeze Soil Region

2011 ◽  
Vol 99-100 ◽  
pp. 332-337
Author(s):  
Bao Fu Duan ◽  
Hong Chun Li ◽  
Yu Kun Zhang ◽  
Meng Zhang ◽  
Lei Li

Abstract. Based on the monitored surrounding rock displacement and the settlement of ground surface and structures of No.7381 tunnel in Harbin, major factors which influence the safety of construction are analyzed and discussed. Results of the analyses indicated, enlargement excavation of tunnel has significant effect on the settlement of ground surface but has less effect on surrounding rock displacement and settlement of structures. Enlargement excavation during rainy season relay influences the structures and ground surface, by contrast, it influences the open-cut part a lot especially for the stability of slopes. It is pointed that the scope which seasonally frozen ground influences in open-cut part is larger than that in underground excavation part but have less effect on the displacement of surrounding rock underground. Seasonally frozen ground also leads to a remarkable displacement of ground surface. The application of temporary steel bracing is needed and effective for controlling surrounding rock displacement and the settlement of ground surface.

2012 ◽  
Vol 170-173 ◽  
pp. 502-505
Author(s):  
Li Guo ◽  
Bing Xie

The cut-and-fill mining is the main content of the technical system of green coal mining. And it is an effective way for solving the environmental problems and mining the coal under buildings, under railway, under water and over confined aquifer. No matter what kind of filling way, the gob stowing cannot achieve ideal filling effect, the filling effect is random in certain scope. Taking a coal mine as an example, with the aid of stochastic finite element method, the three situations of gob stowing were calculated and analyzed to explore the statistical rule of the ground surface settlement and the stability of surrounding rock because of random variation of gob stowing effect.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhi Lin ◽  
Xiang Chen ◽  
Hongyun Yang ◽  
Chongguo Cheng ◽  
Huasong Wang ◽  
...  

The construction of urban underground cross-interchange transfer subway stations often encounters the difficulties of shallow-buried, different surrounding rock, large spans and heights, congested road traffic, and surrounding buildings sensitive to the construction sequence. Therefore, there is a need for an underground project that controls the stability of underground space and ground subsidence. Based on the construction difficulties of a certain station (the maximum excavation area over 760 m2), this paper conducts a comprehensive selection design of the structure, construction mechanics response, and control technology of this type of interchange station structure and construction excavation. First of all, based on the design experience of large-scale underground transfer transportation engineering and taking full consideration of the stratum conditions, an “arch-wall” cross transfer structure method is proposed. The refined numerical analysis shows that the structure can fully utilize the stratum conditions to reduce the ground surface settlement. Then, in view of the stability of surrounding rock during the construction of a large section, based on the traditional large section excavation method, a construction method of “cross rock beam + heading method” was proposed. In order to verify the effect of the construction method, the three-dimensional detailed numerical model was used to simulate the construction conditions, and the mechanical response characteristics and displacement changes of surrounding rock under each excavation step are explored. Simultaneous interpreting with the traditional large section excavation method, the results show that the new method has advantages in controlling the stability of the surrounding rock. Meanwhile, in order to ensure the safe construction of the project, the self-developed multifunctional engineering test system for traffic tunnels is used to carry out a large-scale physical model experiment to simulate the entire process of the “arch-wall” cross transfer structure construction response characteristics. By analyzing the data of measuring points, the results show that the structure form and the excavation method cause the ground surface settlement, stress, and structural forces meet the requirements for safe construction. Finally, the station can be safely constructed under the new structure form and construction method. Therefore, the structure form and method proposed in this paper can be adapted to the large-scale underground structure under construction in complex environments.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shijie Chen ◽  
Ming Xiao ◽  
Juntao Chen

A numerical analysis method for block failure is proposed that is based on continuum mechanics. First, a mesh model that includes marked blocks was established based on the grid-based block identification method. Then, expressions of the contact force under various contact states were derived based on the explicit contact force algorithm, and a contact simulation method between blocks and the surrounding rock was proposed. The safety factors of the blocks were calculated based on the strength reduction method. This numerical analysis method can simulate both the continuous deformation of the surrounding rock and the discontinuous failure processes of the blocks. A simple example of a sliding block was used to evaluate the accuracy and rationality of the numerical method. Finally, combined with a deep underground excavation project under complex geological conditions, the stability of the blocks and rock were analyzed. The results indicate that the key blocks are damaged after excavation, the potentially dangerous blocks loosen and undergo large deformations, and the cracks between the blocks and the rock gradually increase as the excavation proceeds. The safety factors of the blocks change during the excavation. The numerical results demonstrate the influence of the surrounding rock on the failure process and on the stability of the blocks, and an effective analysis method is provided for the stability analysis of blocks under complex geological conditions.


2013 ◽  
Vol 353-356 ◽  
pp. 1519-1524
Author(s):  
Jin Kui Li ◽  
Jing Jing Li ◽  
Liu Jie Du

The shallow underground tunnel is near to the ground; its many construction procedures are complicated, supporting and excavation are intertwined. The ground surface deformation is complex during construction. Through the analysis of the cross passage surface settlement data of Dalian metro Line 1High-tech zone Street station, we found that the ground surface caused by artificial filling integrally sinks during excavation, the shape of its sinking is like a flat funnel, the characteristics of settling tank are obvious. The influence of faces constructing is obvious on surface settlement, and the transverse influence range is about 30m; the longitudinal influence range is about 15m. The results of the paper show that the place of monitoring points should be held at 15m ahead from the tunnel face, effectivemonitoring period is 70d. The monitoring results are enough and safe for the stability requirement of the surrounding rock.


Author(s):  
Van Min Nguyen ◽  
V. A. Eremenko ◽  
M. A. Sukhorukova ◽  
S. S. Shermatova

The article presents the studies into the secondary stress field formed in surrounding rock mass around underground excavations of different cross-sections and the variants of principal stresses at a mining depth greater than 1 km. The stress-strain analysis of surrounding rock mass around development headings was performed in Map3D environment. The obtained results of the quantitative analysis are currently used in adjustment of the model over the whole period of heading and support of operating mine openings. The estimates of the assumed parameters of excavations, as well as the calculations of micro-strains in surrounding rock mass by three scenarios are given. During heading in the test area in granite, dense fracturing and formation of tensile strain zone proceeds from the boundary of e ≥ 350me and is used to determine rough distances from the roof ( H roof) and sidewalls ( H side) of an underground excavation to the 3 boundary e = 350me (probable rock fracture zone). The modeling has determined the structure of secondary stress and strain fields in the conditions of heading operations at great depths.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2838
Author(s):  
Xiaoxing Zhang ◽  
Haoyuan Yi ◽  
Junjun Liu ◽  
Qi Li ◽  
Xin Luo

There has been a rising interest in compliant legged locomotion to improve the adaptability and energy efficiency of robots. However, few approaches can be generalized to soft ground due to the lack of consideration of the ground surface. When a robot locomotes on soft ground, the elastic robot legs and compressible ground surface are connected in series. The combined compliance of the leg and surface determines the natural dynamics of the whole system and affects the stability and efficiency of the robot. This paper proposes a bio-inspired leg compliance planning and implementation method with consideration of the ground surface. The ground stiffness is estimated based on analysis of ground reaction forces in the frequency domain, and the leg compliance is actively regulated during locomotion, adapting them to achieve harmonic oscillation. The leg compliance is planned on the condition of resonant movement which agrees with natural dynamics and facilitates rhythmicity and efficiency. The proposed method has been implemented on a hydraulic quadruped robot. The simulations and experimental results verified the effectiveness of our method.


2019 ◽  
Vol 136 ◽  
pp. 04023
Author(s):  
Ming Zhao ◽  
Ke Li ◽  
Hong Yan Guo ◽  
KaiCheng Hua

Based on the special geological conditions of a tunnel in Qingyuan section of Huizhou-Zhanzhou Expressway, FLAC3d numerical simulation software is used to simulate the rheological properties and instability of surrounding rock in large-section fully weathered sandstone section, and the stability and loss of surrounding rock are analyzed. The deformation of the dome and the face at steady state is analyzed. It is found that: 1) when the surrounding rock is in a stable state, the deformation curve of the dome is smooth. When the surrounding rock of the face is unstable, the front of the face appears ahead. Deformation should be first strengthened on the surrounding rock in front of the face. 2) The arched foot is an important part of the instability of the surrounding rock. In order to prevent the expansion of the collapsed part, the arched part should be reinforced. 3) In order to obtain the limit state of surrounding rock stability, the strength of surrounding rock is reduced, and the strength reduction coefficient corresponding to the displacement sudden point is taken as the safety factor of rock stability around the hole, and the stability safety coefficients of surrounding rock of each construction step are greater than 1.2. 4) The dynamic standard values of deformation control in the whole construction stage are obtained by analyzing the deformation curves of each data monitoring point with time in the corresponding time period of each construction step.


2008 ◽  
Vol 73 (3) ◽  
pp. 271-282 ◽  
Author(s):  
Jelena Zvezdanovic ◽  
Dejan Markovic

The stability of chlorophylls toward UV irradiation was studied by Vis spectrophotometry in extracts containing mixtures of photosynthetic pigments in acetone and n-hexane. The chlorophylls underwent destruction (bleaching) obeying first-order kinetics. The bleaching was governed by three major factors: the energy input of the UV photons, the concentration of the chlorophylls and the polarity of the solvent, implying different molecular organizations of the chlorophylls in the two solvents.


1974 ◽  
Vol 11 (1) ◽  
pp. 182-201 ◽  
Author(s):  
René Marche ◽  
Robert Chapuis

The horizontal displacements measured at the toe of eight embankments are analyzed as a function of the factor of safety. The embankments are built on layers of soft clay. Only the undrained stage is studied.When the factor of safety of the embankments is higher than about 1.4, the horizontal displacements on the ground surface, at the toe of the embankment seem to follow an elastic law which is highly dependent on the ratio of the thickness of the soft layer to the width of the embankment. When the factor of safety is lower than about 1.4, the horizontal displacements do not follow an elastic law, they increase considerably. Consequently, it is suggested that the horizontal displacements be precisely measured at the toe of embankments during construction. These measurements are simple and sensitive to the approach of failure, they can be efficiently used to control the stability of embankments. This study also gives some information concerning the variation of horizontal displacements versus depth.


Sign in / Sign up

Export Citation Format

Share Document