Study on Gas Flow Law in Goaf of Huangling No.1 Mine Fully-Mechanized Face

2014 ◽  
Vol 1010-1012 ◽  
pp. 1548-1553
Author(s):  
Tian Xuan Hao ◽  
Meng Liu

The gas concentration field in goaf of Huangling No.1 Mine 304 fully-mechanized face was simulated numerically by FLUENT software with high fracture drilling or not. The results of numerical simulation were confirmed by fixed sampling method of immersed tube in goaf. Thus, the law of gas concentration field was gained, which provides the important basis for gas control of working face.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wei Wang ◽  
Zongxiang Li ◽  
Hongming Yu

This study introduced gas control technology in goaf using adjacent roadway large-diameter (550 mm) boreholes to control gas accumulation in the upper corner of a fully mechanized working face in high-gas coal seams. The gas control process in the upper corner and gas interception in goaf by large-diameter boreholes was analyzed using the CFD model of the gas flow in goaf. The latter considered the control equation of gas flow, the established permeability model of goaf, and the gas emission law in goaf. Using the 2-105 working face of the Tenghui Coal Mine, Shanxi Province, China, as a case study, the distribution patterns of gas concentration and flow field in the goaf for various extraction flow parameters and different positions of boreholes were numerically simulated. The dependences between various locations, drainage flows, and the gas concentration in the upper corner were determined and fitted by engineering equations. The evolution pattern of the spontaneous combustion zone in the goaf under the drainage conditions was also analyzed. The optimal borehole configuration parameters ensuring the extraction flow rate exceeding 3 m·s−1 and the effective gas control in the upper corner of the working face at a distance of 5 m–15 m behind the working face were identified. The engineering practice proved the feasibility of gas control in the goaf using the adjacent roadway large-diameter borehole. The gas concentrations in the return airflow and the upper corner of the working face were kept below 0.65 and 0.8%, respectively, to ensure production safety and improve the gas utilization efficiency.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1531-1534
Author(s):  
Xiao Feng Ma

This paper simulates the alternation of the maximum explosion overpressure on the different condition of the concentration based on the fluent software. The results show the maximum explosion overpressure increases in the earlier stage and then decreases in the later stage because of the different flammable gas concentration: the maximum explosion overpressure enhanced in 6% gas concentration and drops in 12% gas concentration; it augments in 6% gas concentration and drops in 12% gas concentration with the joining of the hydrogen; the explosion pressure peaked just at the 9% concentration of the flammable gas.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yuqi Shang ◽  
Guiyi Wu ◽  
Qinzhi Liu ◽  
Dezhong Kong ◽  
Qiang Li

In order to effectively solve the problem of gas concentration overrun in the upper corner of goaf and tailentry during the mining of panel 9303 in Anshun Coal Mine, based on the advantages of controllable trajectory and wide coverage area of directional drilling technology, high directional long boreholes are arranged in tailentry 9303 to extract pressure relief gas. Firstly, the principle of high directional long borehole drainage technology is introduced, and the fracture evolution of overlying strata is obtained through using numerical simulation, theoretical calculation, and field practice, and the fracture evolution range is determined to be 6–12.69 m, and rationality of fracture height obtained by theoretical analysis and numerical simulation is verified by the method of field borehole peep observation. Through the analysis, it is concluded that the best location of the final hole is within the range of 6–12.69 m of the roof of coal seam 9#. The field practice has proved that the final hole position of the high directional long borehole is arranged at 12 m from the roof of coal seam 9#, and the average gas extraction concentration can reach 40%–50% after the borehole enters the stable extraction stage, the purity of gas extraction is up to 8.5 m3/min, and the gas concentration in the upper corner of panel 9303 is stable below 0.5% during mining, which achieves good gas drainage and control effect and provides a new way for gas control under similar geological conditions.


2020 ◽  
Vol 315 ◽  
pp. 03003
Author(s):  
Vadim E. Zinurov ◽  
Oksana S. Dmitrieva ◽  
Oksana S. Popkova

The article deals with the problem of increasing the efficiency of dedusting the gas flow from the finely dispersed particles smaller than 10 μm. In order to solve this problem, a design of centrifugal separator with coaxially arranged pipes is proposed. The described principle of operation includes the large values of centrifugal forces, which take place inside the device when the flow is swirled, and these forces throw the finely dispersed particles to the walls of device. This scientific paper shows a numerical simulation of gas flow dedusting process by means of ANSYS Fluent software package. The efficiency of dedusting the gas from the finely dispersed particles of up to 10 μm in the device is on average within the range of 53.8–76.7%. The exponential function, describing the changes in the pressure loss from the input gas rate, is obtained. In the course of studies, it was found that the pressure loss in the device is not more than 800 Pa at the input gas rate from 3 to 19 m/s.


2013 ◽  
Vol 838-841 ◽  
pp. 2630-2633
Author(s):  
Guan Yi Chen ◽  
Guo Dong Yuan ◽  
Le Yu Zheng ◽  
Xiao Ke Guo ◽  
An Long Lv ◽  
...  

The gas flow status including velocity and pressure in the rectangular gas duct (before or after) electrostatic precipitator of a power plant were simulated using Fluent software. The grid accuracy which is required by simulation has been determined then the gas flow status has been analyzed through the comparison between numerical simulation results and empirical calculation results. The results show that flues inner supporting structures are the main factor of gas pressure drops and outlet velocity distrubution.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Hu Wen ◽  
Yin Liu ◽  
Jun Guo ◽  
Ze Zhang ◽  
Mingyang Liu ◽  
...  

High-temperature poisonous smoke produced by coal mine roadway fire seriously affects miners' lives and safety. Studying the development law of high-temperature smoke in the process of mine roadway fire and then exploring the danger of roadway are of great significance to personnel safety and post-disaster rescue. In order to study this problem, the CFD numerical simulation method is used to establish a fire calculation model based on ANSYS Fluent software in the development stage of mine fire. The high-temperature flue gas flow in the roadway during the development stage of mine fire is simulated, and the variation law of temperature field and gas concentration field with time and space position under different levels of roadway in the development stage of fire is revealed. The variation rules of environmental parameters, such as temperature, CO, and CO2, are obtained by numerical calculation. Based on these, the danger zones of smoke spread in fire development stage are divided by the critical values of high-temperature smoke and toxicity evaluation index, and the mathematical fitting analysis of the evolution of the dangerous area with time is carried out. The research results have certain theoretical guiding significance for reducing underground environmental pollution and ensuring the personal safety of workers and rescuers.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Li Chong ◽  
He Sifeng ◽  
Xu Zhijun

The overrunning disaster of harmful gas tends to occur in the working face in thick coal seam with high gas concentration, as the fully mechanized caving stope has the characteristics of high mining intensity, high remnant coal, and high gas content. Therefore, the disastrous mechanism and concentration distribution of gas migration in fully mechanized caving stope are the theoretical basis for gas control scheme. Based on the 7607 working face in Wuyang coal mine, the gas emission quantity in working face is comprehensively analyzed by field measurement in this paper. The gas leakage field, oxygen concentration field, and gas concentration field in 7607 working face are simulated by establishing the equal proportional numerical model. Due to the increase of air leakage in working face caused by the high alley pumping drainage, the risk of coal spontaneous combustion is also analyzed, when gas extraction in goaf is carried out. The research results show that the gas drainage technology in high drainage roadway has a remarkable effect on the gas overrunning phenomenon. The gas concentration near the upper corner of the working surface has been reduced from 0.7%-1% to 0.5%. At the same time, it is necessary to pay attention to the risk of coal spontaneous combustion in the goaf for gas drainage in the high drainage roadway. The width of the oxidation zone in the goaf is about 25 m deeper than that before the drainage. Research results provide the references for gas control technology and coal spontaneous combustion prevention in similar working faces.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Zhe Li ◽  
Fangtian Wang ◽  
Shuai Ren ◽  
Guannan Liu

Abstract The prevention of gas overrun in the panel is one of the key issues on green mining. In this paper, a physical goaf model was established based on the geological production conditions of a coal seam in a coal mine in Henan Province, and the combined drainage technology by burying and spilling pipeline in the upper corner was proposed. The Fluent software was used to simulate the changes of gas mass fraction and flow field distribution when the gas is extracted from the goaf without the gas pipeline, with a single buried pipeline, and with the combination of buried and spilled pipelines. Analysis and simulation showed that in the absence of drainage pipelines, the gas concentrations in both the return airway and the upper corner are up to 1.2%, which failed to meet the gas prevention and control standard on the mine. In the case of gas drainage with a single buried pipeline, the average gas concentration in the return airway was 0.7%, and only the gas concentration in the upper corner was up to 1.1%, which failed to meet the gas control standards on the mine’s panel. However, the maximum gas concentration in the combined drainage was reduced from 1.1% to 0.6%, which indicates that the technology can greatly reduce gas concentration, but there is still a gap from the mine’s gas control standard. Therefore, the impacts of the lengths of pipelines buried in different goafs on the gas drainage effect in the goaf were studied, and it was concluded that the reasonable length of pipelines buried in the goaf under the geological conditions was 20 m. This technology not only solves the problem of gas overrun in the panel but also realizes the utilization of gas resources in the goaf. The research results are of guiding significance for pipeline laying and the drainage technology in the upper corners on the U-shaped ventilation panel.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1498-1501
Author(s):  
Tao Qin ◽  
Yong Li Liu ◽  
Kai Yun Zhang

COMSOL software was used in the paper for numerical simulation of excavation face and study stress, gas pressure, the gas seepage velocity, displacement and the change of temperature as well as to the effect of dynamic disaster under different temperature conditions. The results show that the speed of gas pressure to reduce slowed, the gas pressure near the working face gradient increasing with the increase of temperature; the face gas concentration changed not significantly because of the change of temperature under the condition of the temperature change is not big; seepage velocity varies was not obvious under the condition of other conditions don't change, because the viscosity coefficient of the change was not obvious.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Jiajia Liu ◽  
Jianliang Gao ◽  
Ming Yang ◽  
Dan Wang ◽  
Liang Wang

In view of the ground drilling of the N2206 working face in Shanxi Wangzhuang Coal Mine, the gas concentration is low and the extraction effect is not good. Fluent computational fluid dynamics software was used to simulate the ground extraction drilling position of the N2206 working face in the goaf (the distance from the top of the coal seam and the distance from the return to the wind). The numerical simulation results show that when the final hole of the ground extraction hole in the goaf is 16 m from the roof of the coal seam and the distance from the return air is 45 m, the extraction effect is optimal. The average extraction gas volume is 9.78 m3/min, and the average extraction gas concentration is 43.95%, the best extraction effect is obtained. After optimizing the ground drilling position in the goaf and combining with the site implementation, the maximum gas scouring amount of the extraction is 12.59 m3/min, which is 3.42 m3/min higher than the original. The maximum gas concentration of extraction was 63.54%, which was 28.82% higher than the original. After optimization, the gas concentration of the extraction is more than 30%, and the extraction effect is very good. Field application results further validate the reliability of theoretical analysis and numerical simulation results.


Sign in / Sign up

Export Citation Format

Share Document