Stability Evaluation of Fill Dam in Graphite Mine Tailings Impoundment

2014 ◽  
Vol 1010-1012 ◽  
pp. 288-291
Author(s):  
Shuang Huang ◽  
Jian Ping Chen ◽  
Qing Wang

The graphite mine tailings impoundment was detailed investigated, and the structural features of fill dam in the graphite mine tailings impoundment was analyzed. Then the author created the stability calculating model of this fill dam, calculated its stability coefficient, and evaluated its stability. It can be concluded that: the fill dam was stable under the condition of normal operation, and it was unstable under the condition of flood operation and special operation.

2012 ◽  
Vol 170-173 ◽  
pp. 1116-1123 ◽  
Author(s):  
Xin Li Hu ◽  
Hui Ming Tang ◽  
Chang Dong Li ◽  
Ren Xian Sun

Abstract. During the normal operation of Three Gorges Reservoir, the water level of the reservoir will fluctuate periodically, which will soften and decrease the shear strength of rock soil on the bank, meanwhile decrease the landslide stability. Huangtupo landslide is a typical large and complex landslide in the Three Gorges Reservoir Region, which is consist of four sub-landslides. In particular, the stability of its riverside Huangtupo I# landslide has a great stake. Based on the analysis of engineering geological condition of Huangtupo landslide, the 2D finite element model of Huangtupo I# landslide(The Riverside Slumping mass I#) was established, the proper mechanical parameters was selected. By using the GeoStudio software, according to the reservoir running curve, the simulation on coupling effect of seepage field and stress field was conducted in 7 different modes within the period of one year. The results showed that: ①the reservoir water level fluctuations will affect both the displacement in saturated and un-saturated area of landslide; especially when the water level drawing down sharply; ②the stability coefficient of Huangtupo I# changes with the reservoir water level fluctuations; the minimum stability coefficient occurs 48 days after the water level drawing down and the moment when the water level falls by 11.9m, under that moment the Huangtupo I# is unstable.


NANO ◽  
2010 ◽  
Vol 05 (01) ◽  
pp. 53-60 ◽  
Author(s):  
XIAOLIANG WANG ◽  
XIANG LI ◽  
ELEANOR STRIDE ◽  
MOHAN EDIRISINGHE

Naturally derived biopolymers have been widely used for biomedical applications such as drug carriers, wound dressings, and tissue engineering scaffolds. Chitosan is a typical polysaccharide of great interest due to its biocompatibility and film-formability. Chitosan membranes with controllable porous structures also have significant potential in membrane chromatography. Thus, the processing of membranes with porous nanoscale structures is of great importance, but it is also challenging and this has limited the application of these membranes to date. In this study, with the aid of a carefully selected surfactant, polyethyleneglycol stearate-40, chitosan membranes with a well controlled nanoscale structure were successfully prepared. Additional control over the membrane structure was obtained by exposing the suspension to high intensity, low frequency ultrasound. It was found that the concentration of chitosan/surfactant ratio and the ultrasound exposure conditions affect the structural features of the membranes. The stability of nanopores in the membrane was improved by intensive ultrasonication. Furthermore, the stability of the blended suspensions and the intermolecular interactions between chitosan and the surfactant were investigated using scanning electron microscope and Fourier transform infrared spectroscopy (FTIR) analysis, respectively. Hydrogen bonds and possible reaction sites for molecular interactions in the two polymers were also confirmed by FTIR analysis.


Author(s):  
Yu Cai ◽  
Wei Li ◽  
Bao Zhang ◽  
Wenjian Wu ◽  
Deren Sheng ◽  
...  

Fast valving of ultra-supercritical unit has great effects on over-speed prevention, load-shedding control, transient stability analysis of electrical system and other security problems. The purpose of fast valving is to maintain the stability of power system once fault or load shedding of unit occurs in the electric power system. Therefore, it is of great significance to study the reliability of fast valving for ultra-supercritical unit. In this paper, the KU ( short shedding) logic condition of SIEMENS T3000 system is analyzed as the research object of fast valving. The unit can be avoided over speed by monitoring the unit load and fast valving under faulty grid conditions based on the KU control. A series of measures will be taken after KU is triggered, for instance the governing valving will be closed quickly and the DEH (digital electro-hydraulic) control of the steam turbine will be switched to speeding control mode. On the other hand, the unit will return to normal operation if the transient fault of power grid disappears. The key contributions of this thesis include three parts: Firstly, based on the analysis of control characteristics of ultra-supercritical unit and protective logic and triggered conditions of KU function, a novel dynamic model by coupling the fast valving of steam turbine and the transient stability of generator is established by applying the PSCAD software. Then, the dynamic response process of ultra-supercritical unit is simulated and calculated by adopting the coupling dynamic model when KU function is triggered. Also the influence factors and reliability of fast valving are analyzed under transient fault conditions. Finally, two optimized measures by increasing the time delay and the speed of quantitative judgment are put forward to reduce risks and avoid the misoperation of signal distortion which may be caused by the power transmitter under transient fault conditions. The results of this study can not only help to evaluate the reliability of fast valving function scientifically in power grid transient fault, but also guide the technicians to analyze the stability of the power grid.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4267
Author(s):  
Qi Ye ◽  
Yingchun Gong ◽  
Haiqing Ren ◽  
Cheng Guan ◽  
Guofang Wu ◽  
...  

Cross-laminated timber (CLT) elements are becoming increasingly popular in multi-storey timber-based structures, which have long been built in many different countries. Various challenges are connected with constructions of this type. One such challenge is that of stabilizing the structure against vertical loads. However, the calculations of the stability bearing capacity of the CLT members in axial compression in the structural design remains unsolved in China. This study aims to determine the stability bearing capacity of the CLT members in axial compression and to propose the calculation method of the stability coefficient. First, the stability coefficient calculation theories in different national standards were analyzed, and then the stability bearing capacity of CLT elements with four slenderness ratios was investigated. Finally, based on the stability coefficient calculation formulae in the GB 50005-2017 standard and the regression method, the calculation method of the stability coefficient for CLT elements was proposed, and the values of the material parameters were determined. The result shows that the average deviation between fitting curve and calculated results of European and American standard is 5.43% and 3.73%, respectively, and the average deviation between the fitting curve and the actual test results was 8.15%. The stability coefficients calculation formulae could be used to predict the stability coefficients of CLT specimens with different slenderness ratios well.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 79
Author(s):  
Qiuwei Yang ◽  
Zhikun Ba ◽  
Zhuo Zhao ◽  
Xi Peng ◽  
Yun Sun

Blasting impact load may be encountered during the construction of some pile foundation projects. Due to the effect of blasting impact, hole collapse can easily occur in the hole-forming stage of pile foundation construction. In order to prevent hole collapse, it is very necessary to evaluate the stability of a pile hole wall before pile foundation construction. The calculation of hole collapse can usually be attributed to an axisymmetric circular hole stress concentration problem. However, the existing collapse failure theory of pile hole hardly considers the effect of blasting impact load. In view of this, this paper proposes the stability evaluation method of a pile hole wall under blasting impact. Compared with the existing collapse failure theory, the proposed method fully considers the effect of blasting impact stress. Using Mohr–Coulomb strength theory and symmetry analysis, the strength condition of collapse failure is established in this work for accurate evaluation of the stability of a hole wall. The proposed stability evaluation method is demonstrated by a pile foundation construction project of a bridge. Moreover, a shaking table test on the pile hole model was performed to verify the proposed method by experimental data. The results indicate the effectiveness and usability of the proposed method. The proposed method provides a feasible way for the stability analysis of a pile hole wall under blasting impact.


2008 ◽  
Vol 14 (3) ◽  
pp. 153-158 ◽  
Author(s):  
Snezana Pasalic ◽  
Predrag Jovanic

There are many developed strategies in the emulsion stability evaluation, for purpose of determining the life circle of emulsions. Most of them are based on the reological properties of the emulsions. There are very few which relay on the direct emulsion observations. In this paper we present the developed method for the emulsion stability evaluation by the direct observation of optical properties. As the stability quantification measure we propose the fractal dimension approach. The method is based on the measure of the emulsion transmittance properties, which are directly dependent on the emulsion stability at the moment of measurement. As the test emulsion the oil in the water emulsion was used. The system is classified as the stable emulsion and our intention was to find the moment when the emulsion starts to break. The emulsion transmittance properties were measured using an acquisition system, consisting of a CCD camera and a fast PC configuration equipped with the capturing software. The fractal dimensions were determined by the so called box counting method. The experimental emulsions were measured continuously within the period of 1200 h, from the moment of the emulsion creation. The changes of fractal dimensions were observed which indicates that the emulsion changed its state and therefore the stability during the time. Three regions of the emulsion life circle were divided according to the fractal dimensions measurement, which can be connected with the stable, unstable, and meta-stable states of the emulsion life circle. In the end, the model of the emulsion behavior was developed for the purpose of quantifying the changes in the experimental emulsion.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7178
Author(s):  
Yanqiang Han ◽  
Hongyuan Luo ◽  
Qianqian Lu ◽  
Zeying Liu ◽  
Jinyun Liu ◽  
...  

The long-acting parenteral formulation of the HIV integrase inhibitor cabotegravir (GSK744) is currently being developed to prevent HIV infections, benefiting from infrequent dosing and high efficacy. The crystal structure can affect the bioavailability and efficacy of cabotegravir. However, the stability determination of crystal structures of GSK744 have remained a challenge. Here, we introduced an ab initio protocol to determine the stability of the crystal structures of pharmaceutical molecules, which were obtained from crystal structure prediction process starting from the molecular diagram. Using GSK744 as a case study, the ab initio predicted that Gibbs free energy provides reliable further refinement of the predicted crystal structures and presents its capability for becoming a crystal stability determination approach in the future. The proposed work can assist in the comprehensive screening of pharmaceutical design and can provide structural predictions and stability evaluation for pharmaceutical crystals.


2007 ◽  
Vol 353-358 ◽  
pp. 2855-2859
Author(s):  
W.C. Lee ◽  
Chae Sil Kim ◽  
J.B. Na ◽  
D.H. Lee ◽  
S.Y. Cho ◽  
...  

Since most marine engines are generally very huge and heavy, it is required to keep safety from accidents in dealing them. Several types of lifting lugs have been used to assemble hundred ton–large steel structures and carry the assembled engines. Recently a few crashes have been occurred in carrying engines due to breaking down the lugs. Although the stability evaluation of the lifting lug has therefore been very important for safety, systematic design procedure of the lugs, which includes the structural analysis considering stability, has few reported. This paper describes the three dimensional finite element structural modeling for a lifting lug, the studies for determining the reasonable loading and boundary conditions, and the stability evaluation with the results of structural analyses. It should be very helpful for designing the other types of lifting lugs with safety.


Sign in / Sign up

Export Citation Format

Share Document