Formation and Simulation of Negative Shear Zone

2014 ◽  
Vol 1027 ◽  
pp. 217-220
Author(s):  
Hai Jun Qu ◽  
J.H. Yang ◽  
Gui Cheng Wang

Cutting-direction burr/fracture is one of the important factors that influence the edge quality and performance of precision parts.The formation of negative shear zone decisions the edge quality of workpiece. A finite element model has been established to investigate the mechanism of negative formation in machining H64 brass. The negative shear zone formation process is simulated with rigid-plastic nonlinear finite element method. The cutting direction burr forms when the stress of principal shear zone great than it in negative, the cutting direction fracture forms when the stress of principal shear zone less than it in negative and there is a crack in the area near the tool tip and grow along the negative shear zone .

2007 ◽  
Vol 24-25 ◽  
pp. 249-254 ◽  
Author(s):  
Hai Jun Qu ◽  
Gui Cheng Wang ◽  
Hong Jie Pei ◽  
Qin Feng Li ◽  
Yun Ming Zhu

The cutting-direction burr is one of the important factors that influence the edge quality and performance of precision parts. The cutting-direction burr formation process is simulated with DeformTH3D. The mechanism of cutting-direction burr formation is analyzed in terms of the results of the simulation. The negative shear zone and initiation negative shear angle are discussed too. Study results show that the deformation of CDE is an important factor affect the cutting direction burrs’ size and shape.


2012 ◽  
Vol 201-202 ◽  
pp. 1121-1125 ◽  
Author(s):  
Wen Wei Gong ◽  
Xue Dao Shu ◽  
Wen Fei Peng ◽  
Bao Shou Sun

Microstructure evolution is an effective means to improve the mechanical properties of products, shaft parts formed by cross wedge rolling is not only the shape of the formed parts, but more importantly it improves the comprehensive mechanical properties of the products by deformation. Therefore, the paper sets up the coupled rigid-plastic finite element model with deformation-heat transfer-microstructure by using nonlinear finite element method, and this model is adopted to make simulation calculation for the forming techniques of asymmetric shaft parts of cross wedge rolling based on parity wedge, specifically analyzes the rule of dynamic recrystallization and grain size distribution in the asymmetric rolled parts. The results show that the grain in the wedging place of asymmetric shaft parts of cross wedge rolling based on parity wedge can be obviously refined, and the research results of this paper may provide theoretical foundation for further improving the quality and mechanical properties of asymmetric shafts parts of cross wedge rolling.


2012 ◽  
Vol 426 ◽  
pp. 73-76 ◽  
Author(s):  
Hai Jun Qu ◽  
Gui Cheng Wang ◽  
Y.M Zhu ◽  
Q.X Shen

Cutting direction burr/fracture is one of the important factors that influence the edge quality and performance of precision parts. A finite element model based on material failure mode is developed in this study to simulate the burr /fracture forming process. According to workpiece materials deformation and mechanical properties from the simulation results, the cutting direction burr/fracture formation process is analyzed. The cutting direction burr forms when there is a crack in the area near the tool tip and grow along the principal shear zone, the cutting direction fracture forms as the crack grow along negative zone.


2012 ◽  
Vol 226-228 ◽  
pp. 281-284
Author(s):  
Li Da Zhu ◽  
Xiao Bang Wang ◽  
Tiao Biao Yu ◽  
Wan Shan Wang

The dynamic characteristics of machine tool may directly affect its machining capability, which is analyzed to improve the machining precision and efficiency. In this paper, the 3D finite element model of main components turn-milling center is established by using ANSYS software, and then spindle box of turn-milling center is analyzed and optimized; the natural frequencies and vibration models are obtained after analysis, which guarantee the design requirement of the machining center. Therefore it is significant to improve the design quality of machining center by using FEA software in the design process.


2021 ◽  
Author(s):  
Sandeep Dhar

The trajectory of an angular particle as it cuts a ductile target is, in general, complicated because of its dependence not only on particle shape, but also on particle orientation at the initial instant of impact. This orientation dependence has also made experimental measurement of impact parameters of single angular particles very difficult, resulting in a relatively small amount of available experimental data in the literature. The current work is focused on obtaining measurements of particle kinematics for comparison to rigid plastic model developed by Papini and Spelt. Fundamental mechanisms of material removal are identified, and measurements of rebound parameters and corresponding crater dimensions of single hardened steel particles launched against flat aluminium alloy targets are presented. Also a 2-D finite element model is developed and a dynamic analysis is performed to predict the erosion mechanism. Overall, a good agreement was found among the experimental results, rigid-plastic model predictions and finite element model predictions.


2011 ◽  
Vol 70 ◽  
pp. 315-320 ◽  
Author(s):  
Riaz Muhammad ◽  
Agostino Maurotto ◽  
Anish Roy ◽  
Vadim V. Silberschmidt

Analysis of the cutting process in machining of advanced alloys, which are typically difficult-to-machine materials, is a challenge that needs to be addressed. In a machining operation, cutting forces causes severe deformations in the proximity of the cutting edge, producing high stresses, strain, strain-rates and temperatures in the workpiece that ultimately affect the quality of the machined surface. In the present work, cutting forces generated in a vibro-impact and hot vibro-impact machining process of Ti-based alloy, using an in-house Ultrasonically Assisted Turning (UAT) setup, are studied. A three-dimensional, thermo-mechanically coupled, finite element model was developed to study the thermal and mechanical processes in the cutting zone for the various machining processes. Several advantages of ultrasonically assisted turning and hot ultrasonically assisted turning are demonstrated when compared to conventional turning.


2009 ◽  
Vol 16-19 ◽  
pp. 1082-1086
Author(s):  
Ji Shuang Dai ◽  
Hui Ma ◽  
Xue Jun Wang ◽  
Bang Chun Wen

In this paper, a multi-disk rotor system is studied. The rotor system is properly simplified and the finite element model is established. Assuming that contact region is an arc when the practical rotor-stator rub-impact fault occurs. Contact analysis and nonlinear finite element method are adopted to carry out numerical simulation of rub-impact. The results show that 1/2 fractional frequency components appear in slight rub-impact stage; 1/3 fractional frequency components appear in moderate rub-impact stage and 1/4 fractional frequency components appear in serious rub-impact stage. The research results will provide theoretical support for fault diagnosis of rub-impact.


2011 ◽  
Vol 217-218 ◽  
pp. 1758-1762
Author(s):  
Tao Chang

As the most potential member in the textile composite material, stitched textile composites have already been paid a lot attention. By the simply technology form and relatively low cost, stitched composites had attracted many domestic and foreign researchers, and were gradually used in various engineering practice. This paper using 3D micro-finite element method researches the mechanical behavior and performance of stitched composites, establishing a 3D micro-finite element model for the stitched composites under the improved locking suture way. Through analysis, it shows that each material’s stress distribution characteristics under external loading and finds that the results of this paper’s finite element data results matching well with previous studies’ results, proving the feasibility of this study, so it can be used for forecasting the mechanical properties of a variety of practical stitched composites.


2013 ◽  
Vol 811 ◽  
pp. 228-233
Author(s):  
Yang Yang ◽  
Yuan Ying Qiu ◽  
Gai Juan Wang

The response analysis of a large cable net bearing wind load is conducted by the nonlinear finite element method. First, the form-finding calculation of the cable net structure is carried out to find an equilibrium state which can make the pretensions and sags of the wires meet the given requirements. Then the static analyses of the finite element model of the cable net structure under different wind loads are conducted to assess whether the cable net structure meets the requirements for strength. The work of this paper establishes the foundation for the design of a large cable antenna.


2014 ◽  
Vol 1061-1062 ◽  
pp. 421-426 ◽  
Author(s):  
Panupich Kheunkhieo ◽  
Kiatfa Tangchaichit

The purposes of this research are to explore the baseplate and actuator arm deformation which effect to the gram load which occur in the ball swaging process, the main component determining quality of assembly the head stack assembly with the actuator arm. By shooting a ball though the base plate, the component located on the head stack assembly, the base plate plastic deformation takes place and it in expand in radial direction. The base plate then adjoins with the actuator arm. Using the finite element method to reproduce the ball swaging process, we repeated to study effect of the swage press clamp and velocity. The study done by creating the three dimensionals finite element model to analyze and explain characteristics of the baseplate and actuator arm deformation which effect to gram load which effect to the ball swaging process.


Sign in / Sign up

Export Citation Format

Share Document