Biocomposite Based on Epoxy Resin and Jatropha curcas L. Microparticles

2014 ◽  
Vol 1030-1032 ◽  
pp. 446-449 ◽  
Author(s):  
Petr Valášek ◽  
Miroslav Müller

Jatropha curcas L. is a plant with a high potential with many technologically useful part – seeds of the plant are the most utilized. A development of composite materials – biocomposites from renewable resource is an interesting and prospective tendency of a material engineering. A filler of the biocomposites can be from worse useful parts of plants which were primarily technologically processed for the purpose of gaining various commodities. As an example we can mentioned gaining of oil from Jatropha curcas L. seeds when it is possible to use rests cake from whole seeds. An experiment describes basic mechanical properties of an epoxy resin filled with microparticles of seed cakes (575 μm).

Author(s):  
Georgel MIHU ◽  
Claudia Veronica UNGUREANU ◽  
Vasile BRIA ◽  
Marina BUNEA ◽  
Rodica CHIHAI PEȚU ◽  
...  

Epoxy resins have been presenting a lot of scientific and technical interests and organic modified epoxy resins have recently receiving a great deal of attention. For obtaining the composite materials with good mechanical proprieties, a large variety of organic modification agents were used. For this study gluten and gelatin had been used as modifying agents thinking that their dispersion inside the polymer could increase the polymer biocompatibility. Equal amounts of the proteins were milled together and the obtained compound was used to form 1 to 5% weight ratios organic agents modified epoxy materials. To highlight the effect of these proteins in epoxy matrix mechanical tests as three-point bending and compression were performed.


SINERGI ◽  
2021 ◽  
Vol 25 (3) ◽  
pp. 361
Author(s):  
Muhamad Fitri ◽  
Shahruddin Mahzan ◽  
Imam Hidayat ◽  
Nurato Nurato

The development of composite materials is increasingly widespread, which require superior mechanical properties. From many studies, it is found that the mechanical properties of composite materials are influenced by various factors, including the reinforcement content, both in the form of fibers and particle powder. However, those studies have not investigated the effect of the hardener weight fraction on the mechanical properties of resin composite materials. Even though its function as a hardener is likely to affect its mechanical properties, it might obtain the optimum composition of the reinforcing content and hardener fraction to get the specific mechanical properties. This study examines the effect of hardener weight fraction combined with fiber powder content on mechanical properties of EPR-174 epoxy resin matrix composite and determines the optimum of Them. The research was conducted by testing a sample of composite matrix resin material reinforced with coconut fiber powder. The Powder content was made in 3 levels, i.e.: 6%, 8%, and 10%. While the hardener fraction of resin was made in 3 levels, i.e.: 0.4, 0.5, and 0.6. The test results showed that pure resin had the lowest impact strength of 1.37 kJ/m2. The specimen with a fiber powder content of 6% has the highest impact strength i.e.: 4.92 kJ/m2. The hardener fraction of 0.5 has the highest impact strength i.e.: 4.55 kJ/m2. The fiber powder content of 8% produced the highest shear strength i.e.: 1.00 MPa. Meanwhile, the hardener fraction of 0.6 has the highest shear strength i.e.: 2.03 MPa.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1688
Author(s):  
Marius Marinel Stănescu ◽  
Dumitru Bolcu

When obtaining environment-friendly hybrid resins made of a blend of Dammar natural resin, in a prevailing volume ratio, with epoxy resin, it is challenging to find alternatives for synthetic resins. Composite materials reinforced with waste paper and matrix made of epoxy resin or hybrid resin with a volume ratio of 60%, 70% and 80% Dammar were studied. All samples obtained have been submitted to tensile tests and Scanning Electron Microscopy (SEM) analysis. The tensile response, tensile strength, modulus of elasticity, elongation at break and the analysis of the fracture surface were determined. The damping properties of vibrations of bars in hybrid resins and in the composite materials under study were also examined. The mechanical properties of the four types of resins and of the composite materials were compared. The chemical composition for a hybrid resin specimen were obtained using the Fourier Transformed Infrared Spectroscopy (FTIR) and Energy, Dispersive X-ray Spectrometry (EDS) analyzes.


2015 ◽  
Vol 76 (3) ◽  
Author(s):  
Petr VALÁŠEK

Composites are materials which synergically combine properties of each phase – matrix and filler. Polymer materials can be used as matrix while inorganic and organic particles can be used as fillers. Composite systems based on renewable resources can be designed as an interesting material for engineering. This paper describes on the tribological and other mechanical properties of biocomposites based on polymer resins and microparticles - seed cakes, which were obtained from seeds of the plant Jatropha Curcas L. during pressing. The particle size obtained was 573 µm.The results confirmed that the epoxy and polyurethane resins were capable of forming which corresponds to the interaction with the organic particles prepared from the seeds of Jatropha Curcas L. The presence of particles however, changed the mechanical properties of the resins. In the case of epoxy resins and polyurethane (Sika Force 7723), the hardness according to Shore D identically decreased with a maximum of 1.9. Abrasion resistance decreased due to the presence of particles of 0.0393 cm3 for Glue Epox Rapid, 0.0449 cm3 for Epoxy 1200/324 and 0.0567 cm3 for Sika Force 7723.


2020 ◽  
Vol 299 ◽  
pp. 84-88
Author(s):  
N.Yu. Kiryushina ◽  
A.Yu. Semeykin

The article proposes a method for producing epoxy polymers, based on epoxy resin ED-20, modified with slag from the JSC “Oskol Electrometallurgical Plant”. It has been established that it is possible to regulate physical and mechanical properties of composite materials by introducing filler, which will allow expanding its areas of application.


2013 ◽  
Vol 13 (7) ◽  
pp. 1004-1012 ◽  
Author(s):  
Azmi Yahya ◽  
Khairunnisa Hamdan ◽  
Tajudeen Abiodun Ishola ◽  
Hadi Suryanto

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2058 ◽  
Author(s):  
George Soupionis ◽  
Pantelitsa Georgiou ◽  
Loukas Zoumpoulakis

The present paper deals with the use of polymeric matrix composite materials reinforced with carbon fiber as concrete shear reinforcement materials. Accordingly, cement specimens were manufactured and coated with various types of carbon fabrics and epoxy resin in liquid and solid form (paste). Additionally, composite materials of epoxy resin matrix reinforced with carbon fiber fabrics were manufactured. In all the specimens, the mechanical properties were estimated; the cement samples coated with composite materials of epoxy resin matrix reinforced with carbon fiber fabrics were tested for compressive strength, while the other specimens were tested for shear and bending strength. The specimens were subjected to artificial aging through heat treatment for 8, 12 and 16 days. During the process of artificial aging, the temperature in the chamber reached the range of 65–75 °C. These composite materials exhibited high mechanical properties combined with adaptability. Both an external deterioration of the materials as well as a reduction in mechanical properties during their artificial aging heat treatment were observed. This was shown in the specimens that were not subjected to artificial aging, with an applied compression strength of 74 MPa, and after the artificial aging, there was a decrease of ~7%, with the compression strength being reduced to 68 MPa.


2018 ◽  
Vol 7 (3.6) ◽  
pp. 382
Author(s):  
B Senthil Kumar ◽  
D Muruganandam ◽  
J Jayapriya

In the present scenario composite materials has got a good value in making a high strength component. Kevlar fibre reinforced composite have a good property of making materials with high strength and low weight. With proper fabrication these Kevlar fibres will produce good property in making components that will be used for specific applications. Our project is dealt with the preparation of a laminate using Kevlar fibre reinforced composite in 0o-90o orientation by using epoxy resin as adhesive and to analyze the mechanical properties of that particular laminate and study that it has high mechanical properties or not. Main objective of this project is to make a composite laminate with high strength, high stiffness, and low weight for various applications. 


Sign in / Sign up

Export Citation Format

Share Document