Synthesis of Oriented ZnO Nanofibers Using Electrospun Method on Si (100) Substrate

2014 ◽  
Vol 1033-1034 ◽  
pp. 1094-1098
Author(s):  
Xiu Zhen Lu ◽  
Ming Tao Xu ◽  
Yan Yan Chang ◽  
Bo Peng

ZnO nanofibers on Si (100) were synthesized by electrospun and calcination process. The morphology, structure and optical performance were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy and photoluminescence (PL) spectrum. XRD results indicated ZnO nanofibers on Si (100) wafer calcined at 600 °C had a preferred growth orientation of (002) direction. ZnO nanofibers calcinated at 600 °C had an excellent crystalline structure with the diameters ranging from 70 to 150 nm. Defect states in the ZnO nanofibers were observed, which resulted in the green emission in PL spectrum.

2014 ◽  
Vol 936 ◽  
pp. 439-443 ◽  
Author(s):  
Xin Zhen Lu ◽  
Yan Yan Chang ◽  
Ming Tao Xu ◽  
Bo Peng

ZnO electrospun nanofibers were considered to be potential novel materials in applications of photovoltaic devices and sensors. AZO glass was usually used in those devices as transparent electrodes. ZnO nanofibers on AZO glass were synthesized by electrospinning and calcination process. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and photoluminescence (PL) spectrum was employed to investigate the morphology, structure and optical performance of ZnO nanofibers. Network structure composed of sheet ZnO was observed. Raman spectra and PL spectrum indicated the existence of defect states in the ZnO nanofibers.


2011 ◽  
Vol 356-360 ◽  
pp. 565-568
Author(s):  
Shao Hong Wei ◽  
Mei Hua Zhou ◽  
Wei Ping Du

Pure ZnO and SnO2-ZnO nanofibers were synthesized by electrospinning method and characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure and methanol sensing properties of these fibers were investigated. The results indicate that the 20 wt% SnO2-ZnO sensor exhibits considerable sensitivity, rapid response, and good selectivity against methanol at 200 °C due to the special 1D fibers properties and the promoting effect of SnO2/ZnO heterojunction structure. The methanol sensing mechanism of SnO2-ZnO nanofibers were also discussed.


2013 ◽  
Vol 27 (29) ◽  
pp. 1350211 ◽  
Author(s):  
ARBAB MOHAMMAD TOUFIQ ◽  
FENGPING WANG ◽  
QURAT-UL-AIN JAVED ◽  
QUANSHUI LI ◽  
YAN LI

In this paper, single crystalline tetragonal MnO 2 nanorods have been synthesized by a simple hydrothermal method using MnSO 4⋅ H 2 O and Na 2 S 2 O 8 as precursors. The crystalline phase, morphology, particle sizes and component of the as-prepared nanomaterial were characterized by employing X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and energy-dispersive X-ray spectroscopy (EDS). The photoluminescence (PL) emission spectrum of MnO 2 nanorods at room temperature exhibited a strong ultraviolet (UV) emission band at 380 nm, a prominent blue emission peak at 453 nm as well as a weak defect related green emission at 553 nm. Magnetization (M) as a function of applied magnetic field (H) curve showed that MnO 2 nanowires exhibited a superparamagnetic behavior at room temperature which shows the promise of synthesized MnO 2 nanorods for applications in ferrofluids and the contrast agents for magnetic resonance imaging. The magnetization versus temperature curve of the as-obtained MnO 2 nanorods shows that the Néel transition temperature is 94 K.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Junye Cheng ◽  
Xiuying Yang ◽  
Hua Tian ◽  
Bin Zhao ◽  
Deqing Zhang

Hollow-sphere-like ZnO was successfully prepared by a facile combustion route at 950°C, and no external catalysts or additives were introduced. The morphology and structure of the hollow-sphere-like ZnO were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and energy dispersive spectrometer (EDS). The possible growth mechanism was discussed in detail. In addition, the as-obtained hollow-sphere-like ZnO exhibited a strong green emission at 518 nm and a weak UV emission at 385 nm. We believe that the hollow-sphere-like ZnO material may be a good candidate for application in optical devices and catalyst systems.


NANO ◽  
2012 ◽  
Vol 07 (02) ◽  
pp. 1250013 ◽  
Author(s):  
SOYEON AN ◽  
CHANGHYUN JIN ◽  
HYUNSU KIM ◽  
SANGMIN LEE ◽  
BONGYONG JEONG ◽  
...  

ZnSnO3 nanowires were synthesized on Si substrates by thermal evaporation of a mixture of ZnO, SnO2 and graphite powders. The nanowires were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The ZnSnO3 nanowires varied from 10 to 100 nm in diameter and up to a few hundred of micrometers in length. Transmission electron microscopy and X-ray diffraction revealed that the nanowires are multiphase nanostructures containing ZnSnO3, Zn2SnO4, ZnO, and SnO2 phases. Photoluminescence measurements showed that ZnSnO3 nanowires had a sharp ultraviolet emission peak at approximately 375 nm as well as a broad green emission band centered at approximately 510 nm. The violet emission of ZnSnO3 nanowires exhibits a blue shift by approximately 5 nm compared to that of ZnO nanowires and the visible emission of ZnO nanowires shifted from the orange region to the green region, which should be attributed to the narrowing of Eg. Thermal annealing enhanced the green emission but degraded the ultraviolet emission of the ZnSnO3 nanowires. In addition, the origin of the enhanced luminescence of ZnSnO3 nanowires compared to ZnO and SnO2 nanowires is discussed.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


2002 ◽  
Vol 716 ◽  
Author(s):  
Seok Woo Hong ◽  
Yong Sun Lee ◽  
Ki-Chul Park ◽  
Jong-Wan Park

AbstractThe effect of microstructure of dc magnetron sputtered TiN and TaN diffusion barriers on the palladium activation for autocatalytic electroless copper deposition has been investigated by using X-ray diffraction, sheet resistance measurement, field emission scanning electron microscopy (FE-SEM) and plan view transmission electron microscopy (TEM). The density of palladium nuclei on TaN diffusion barrier increases as the grain size of TaN films decreases, which was caused by increasing nitrogen content in TaN films. Plan view TEM results of TiN and TaN diffusiton barriers showed that palladium nuclei formed mainly on the grain boundaries of the diffusion barriers.


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 611
Author(s):  
Celia Marcos ◽  
María de Uribe-Zorita ◽  
Pedro Álvarez-Lloret ◽  
Alaa Adawy ◽  
Patricia Fernández ◽  
...  

Chert samples from different coastal and inland outcrops in the Eastern Asturias (Spain) were mineralogically investigated for the first time for archaeological purposes. X-ray diffraction, X-ray fluorescence, transmission electron microscopy, infrared and Raman spectroscopy and total organic carbon techniques were used. The low content of moganite, since its detection by X-ray diffraction is practically imperceptible, and the crystallite size (over 1000 Å) of the quartz in these cherts would be indicative of its maturity and could potentially be used for dating chert-tools recovered from archaeological sites. Also, this information can constitute essential data to differentiate the cherts and compare them with those used in archaeological tools. However, neither composition nor crystallite size would allow distinguishing between coastal and inland chert outcrops belonging to the same geological formations.


Sign in / Sign up

Export Citation Format

Share Document