Microwave-Assisted Organic Acid Hydrolysis of Corncob in Bioethanol Production

2014 ◽  
Vol 1033-1034 ◽  
pp. 151-154
Author(s):  
Sininart Chongkhong ◽  
Chakrit Tongurai

The microwave-assisted hydrolysis of carbohydrate from corncob using acetic acid was investigated by response surface methodology. The sequence of variables affecting total reducing sugar concentration in the hydrolyzate was the ratio of corncob to acid solution > acid concentration > microwave heating time. The highest 84.2 g/L glucose concentration was obtained by 0.5 M acetic acid concentration with 0.40:1 corncob to acid solution ratio at 900 W microwave power for 10 min. The hydrolyzate prepared from the optimal hydrolysis condition was fermented by 8%w bakery yeast with pH 5.25 at 28°C for 62 h to achieve the optimum ethanol concentration of 32.2 g/L. This proposed that microwave-assisted organic acid hydrolysis is potential for producing fermentable sugars, and suggested that a two-step process for the ethanol is the satisfied production because of low cost, save energy consumption and friendly to environment.

2018 ◽  
Vol 34 (5) ◽  
pp. 2577-2582
Author(s):  
Mohamed H. H. Mahmoud ◽  
Mahmoud M. Hessien

Nanomagnetic ferrite materials are of great technological importance in several industries due to their high performance, ease of preparation and low cost. The ferrite properties are based on composition, structure and methods of preparation. Nickel ferrite, NiFe2O4, was prepared by the simple microwave assisted-hydrothermal method. Nickel chloride and ferric chloride solutions (stoichiometric ratio of 1: 2 respectively) were mixed, the pH was raised to 10.5 and the mixture was heated at 180 °C in a closed Teflon vessel using a microwave oven at different periods of time (2 - 24 h). The formed powders were examined by XRD, TEM, and VSM. The intensity of nickel-ferrite in the XRD patterns increased with time owing to increase in crystallinity of the formed phase. The TEM images showed that, the size was in the range of 20-40 nm and contents of fine particles noticeably decreased with increasing reaction time to 4-6 hrs and contents of more regular cubic particles are formed. The NiFe2O4 magnetization was continuesly increased with raising the heating time from 2h (9 emu/g) to 24 h (43 emu/g) which may be due to the high purity and crystallinity of the formed NiFe2O4. The results showed that the properties of the formed ferrite can be tailored by controlling the heating time. Microwave assisted co-precipitation followed by hydrothermal digestion resulted in a substance of good homogeneity and crystallinity at a short time.


REAKTOR ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 81-88
Author(s):  
Euis Hermiati ◽  
Maulida Oktaviani ◽  
Riksfardini Annisa Ermawar ◽  
Raden Permana Budi Laksana ◽  
Lutfi Nia Kholida ◽  
...  

Sugarcane trash contains significant amount of xylan that could be hydrolysed to xylose. The xylose could be further fermented to produce xylitol, a sugar alcohol that has low calories and does not cause carries of teeth. In this study we optimized the production of xylose from sugarcane trash by microwave-assisted maleic acid hydrolysis using response surface methodology (RSM). The factors optimized were acid concentration, time, and temperature. The xylose yield based on the weight of initial biomass was determined and it served as a response variable. Results show that acid concentration and interaction between time and temperature had significant effect on xylose yield. The quadratic regression model generated from the optimization was fit and can be used to predict the xylose yield after hydrolysis with various combinations of acid concentration, time, and temperature. The optimum condition for xylose production from sugarcane trash was using maleic acid of 1.52%, and heating at 176 °C for 6.8 min. At this condition the yield of xylose was 24.3% per initial biomass or 0.243 g/ g biomass.Keywords: maleic acid; microwave heating; response surface methodology; sugarcane trash, xylose


2012 ◽  
Vol 4 ◽  
pp. 238-244 ◽  
Author(s):  
E. Hermiati ◽  
D. Mangunwidjaja ◽  
T.C. Sunarti ◽  
O. Suparno ◽  
B. Prasetya

2013 ◽  
Vol 29 (11) ◽  
pp. 1049-1053 ◽  
Author(s):  
Yuuki TANAKA ◽  
Ken OKAMOTO ◽  
Ayako MATSUSHIMA ◽  
Tomoki OTA ◽  
Yoshitsugu MATSUMOTO ◽  
...  

Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 18
Author(s):  
Sang-Bin Lim

Immature Citrus unshiu pomace (ICUP) was hydrolyzed under organic acid-catalyzed, subcritical water (SW) conditions to produce flavonoid monoglucosides (hesperetin-7-O-glycoside and prunin) and aglycons (hesperetin and naringenin) with high biological activities. The results of single-factor experiments showed that with 8 h of hydrolysis and an increasing citric acid concentration, the yield of flavonoid monoglucosides (hesperetin-7-O-glycoside and prunin) increased from 0 to 7% citric acid. Afterward, the hesperetin-7-O-glycoside yield remained constant (from 7 to 19% citric acid) while the pruning yield decreased with 19% of citric acid, whereas the aglycon yield increased continuously. In response surface methodology analysis, a citric acid concentration and hydrolysis duration of 13.34% and 7.94 h were predicted to produce the highest monoglucoside yield of 15.41 mg/g, while 18.48% citric acid and a 9.65 h hydrolysis duration produced the highest aglycon yield of 10.00 mg/g. The inhibitory activities of the SW hydrolysates against pancreatic lipase (PL) and xanthine oxidase (XO) were greatly affected by citric acid concentration and hydrolysis duration, respectively. PL and α-glucosidase inhibition rates of 88.2% and 62.7%, respectively, were achieved with 18.48% citric acid and an 8 h hydrolysis duration, compared to 72.8% for XO with 16% citric acid and 12 h of hydrolysis. This study confirms the potential of citric acid-catalyzed SW hydrolysis of ICUP for producing flavonoid monoglucosides and aglycons with enhanced enzyme inhibitory activities.


Sign in / Sign up

Export Citation Format

Share Document