Application of Polymer Gel-Electrolytes for Cleaning and Restoration of Steel Objects

2014 ◽  
Vol 1040 ◽  
pp. 8-12
Author(s):  
Oksana V. Dubinina ◽  
Galina V. Lyamina ◽  
Gennady M. Mokrousov

Application of polymer gels for cleaning and restoration of the surface of different steel grades has been showed. Two techniques of the surface cleaning have been tested: a contact of the polymer film with an object surface; the electrochemical cleaning of metals where the polymer gel was used as a background electrolyte. It has been established that the first technique is more effective for low carbon steels and the second technique is more effective for high-alloy steels. The advantages of the application of the technique with polymer gels are localization and control of the process.

1984 ◽  
Vol 44 ◽  
Author(s):  
R. Daniel McCright ◽  
H. Weiss

AbstractCarbon steels may be used for borehole liners in a potential high-level nuclear waste repository in tuff in Nevada. Borehole liners are needed to facilitate emplacement of the waste packages and to facilitate retrieval of the packages, if required. Corrosion rates of low carbon structural steels AISI 1020 and ASTM A-36 were determined in J-13 well water and in saturated steam at 100°C. J-13 well water is representative of water which has percolated through the tuff horizon where the repository would be located. Tests were conducted in air-sparged J-13 water to attain stronger oxidizing conditions. A limited number of irradiation corrosion and stress corrosion tests were performed. Chromium-molybdenum alloy steels and cast irons were also tested. These materials showed lower general corrosion but were susceptible to stress corrosion cracking when welded.


2005 ◽  
Vol 500-501 ◽  
pp. 573-580 ◽  
Author(s):  
D. Ormston ◽  
Volker Schwinn ◽  
Klaus Hulka

Steels with bainitic microstructures show the capacity to fulfil the requirements of high strength and low temperature toughness necessary for plate steels in specialised industrial constructions. The introduction of steels with higher strength allows for weight reductions of steel constructions. This paper investigates the development of hot rolled structural plate steels through laboratory hot rolling simulations of thermo-mechanically controlled processes (TMCP). Specific alloying and microalloying along with an optimised TMCP process has allowed high tensile properties to be achieved in combination with high levels of toughness. Tensile strengths of up to 900 MPa have been achieved with Charpy V-notch toughness greater than 200J at –40°C. Elements such as molybdenum, niobium and boron have been added to low carbon steels to promote the formation of fully bainitic microstructures with much lightened chemical compositions. The presented concepts allow the production of steel grades above S500 up to S690.


2021 ◽  
Vol 43 (6) ◽  
pp. 753-768
Author(s):  
Yu. M. Koval ◽  
◽  
V. Z. Kutsova ◽  
T. V. Kotova ◽  
M. A. Kovzel ◽  
...  

2020 ◽  
pp. 74-79
Author(s):  
V.N. Gadalov ◽  
V.V. Shkatov ◽  
Yu. V. Skripkina ◽  
A.E. Gvozdev

The article considers dependence of the critical deformation for dynamic recrystallization in low-alloy steels on the chemical composition. The article shows an improved model for forecasting the critical deformation for dynamic recrystallization, which allows considering the content of chemical elements in steel. The article analyzes the influence of the chemical composition of low-alloy steels on the value of critical deformation during hot deformation. The article shows that the developed mathematical model can be used in the system of automated control of the structure and properties of steels during hot rolling to forecast conditions for the development of dynamic recrystallization and to select the optimal chemical composition of steels.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1336
Author(s):  
Álvaro Miguel ◽  
Nuria García ◽  
Víctor Gregorio ◽  
Ana López-Cudero ◽  
Pilar Tiemblo

Polymer gel electrolytes have been prepared with polyethylene oxide (PEO) and the deep eutectic mixture of AlCl3: urea (uralumina), a liquid electrolyte which has proved to be an excellent medium for the electrodeposition of aluminum. The polymer gel electrolytes are prepared by mixing PEO in the liquid electrolyte at T > 65 °C, which is the melting point of PEO. This procedure takes a few minutes and requires no subsequent evaporation steps, being a solvent-free, and hence more sustainable procedure as compared to solvent-mediated ones. The absence of auxiliary solvents and evaporation steps makes their preparation highly reproducible and easy to scale up. PEO of increasing molecular weight (Mw = 1 × 105, 9 × 105, 50 × 105 and 80 × 105 g mol−1), including an ultra-high molecular weight (UHMW) polymer, has been used. Because of the strong interactions between the UHMW PEO and uralumina, self-standing gels can be produced with as little as 2.5 wt% PEO. These self-standing polymer gels maintain the ability to electrodeposit and strip aluminum, and are seen to retain a significant fraction of the current provided by the liquid electrolyte. Their gels’ rheology and electrochemistry are stable for months, if kept under inert atmosphere, and their sensitivity to humidity is significantly lower than that of liquid uralumina, improving their stability in the event of accidental exposure to air, and hence, their safety. These polymer gels are tough and thermoplastic, which enable their processing and molding into different shapes, and their recyclability and reprocessability. Their thermoplasticity also allows the preparation of concentrated batches (masterbatch) for a posteriori dilution or additive addition. They are elastomeric (rubbery) and very sticky, which make them very robust, easy to manipulate and self-healing.


Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 391 ◽  
Author(s):  
Elena Sidorova ◽  
Andrey V. Karasev ◽  
Denis Kuznetsov ◽  
Pär G. Jönsson

Corrosion rate in different steel grades (including oilfield pipeline steels) is determined by the presence of non-metallic inclusions (NMI) in steels. Specifically, the effect of different inclusions on the quality of steels depends on their characteristics such as size, number, morphology, composition, and physical properties, as well as their location in the steel matrix. Therefore, the optimization and control of NMI in steels are very important today to obtain an improvement of the material properties of the final steel products. It is well known that a Ca-treatment of liquid steels in ladle before casting is an effective method for modification of non-metallic inclusions for improvement of the steel properties. Therefore, the NMI characteristics were evaluated in industrial steel samples of low carbon Ca-treated steel used for production of oil-pipelines. An electrolytic extraction technique was used for extraction of NMI from the steel samples followed by three-dimensional investigations of different inclusions and clusters by using SEM in combination with EDS. Moreover, the number and compositions of corrosion active non-metallic inclusions were estimated in hot rolled steel samples from two different heats. Finally, the corrosion resistance of these steels can be discussed depending on the characteristics of non-metallic inclusions present in the steel.


1960 ◽  
Vol 2 (12) ◽  
pp. 641-645
Author(s):  
M. E. Blanter ◽  
K. P. Koryagin ◽  
O. V. Martishin

2018 ◽  
Vol 144 ◽  
pp. 02008 ◽  
Author(s):  
S. R. Harisha ◽  
Sathyashankara Sharma ◽  
U. Achutha Kini ◽  
M. C. Gowri Shankar

The importance of medium carbon steels as engineering materials is reflected by the fact that out of the vast majority of engineering grade ferrous alloys available and used in the market today, a large proportion of them are from the family of medium carbon steels. Typically medium carbon steels have a carbon range of 0.25 to 0.65% by weight, and a manganese content ranging from 0.060 to 1.65% by weight. Medium carbon steels are more resistive to cutting, welding and forming as compared to low carbon steels. From the last two decades a number of research scholars reported the use of verity of heat treatments to tailor the properties of medium carbon steels. Spheroidizing is the novel industrial heat treatment employed to improve formability and machinability of medium/high carbon low alloy steels. This exclusive study covers procedure, the effects and possible outcomes of various heat treatments on medium carbon steels. In the present work, other related heat treatments like annealing and special treatments for property alterations which serve as pretreatments for spheroidizing are also reviewed. Medium carbon steels with property alterations by various heat treatment processes are finding increased responsiveness in transportation, aerospace, space, underwater along with other variegated fields. Improved tribological and mechanical properties consisting of impact resistance, stiffness, abrasion and strength are the main reasons for the increased attention of these steels in various industries. In the present scenario for the consolidation of important aspects of various heat treatments and effects on mechanical properties of medium carbons steel, a review of different research papers has been attempted. This review may be used as a guide to provide practical data for heat treatment industry, especially as a tool to enhance workability and tool life.


Author(s):  
Yu. V. Grebnev ◽  
N. I. Gabelchenko ◽  
V. F. Zharkova ◽  
D. Yu. Grebnev

In the production of castings from medium-carbon steel grades, metal carburization with pig iron additives, as well as carbon oxidation processes require additional consumption of auxiliary materials and electricity and take from 20 to 30% of the total technological time for the steel smelting process. an electric arc furnace with an acidic lining. In the work, studies were carried out on the combination of the processes of carbon oxidation of low-carbon steels and carburization for medium-carbon steels with the process of melting the charge in order to reduce the time of the melting process and reduce the number of labor-intensive operations.


Sign in / Sign up

Export Citation Format

Share Document