Influences of Sintering Temperature on Microstructure and Electrical Properties of TiO2 Varistor Ceramics

2010 ◽  
Vol 105-106 ◽  
pp. 317-319
Author(s):  
Yan Yan Chen ◽  
Ming Zou ◽  
Yuan Wang ◽  
Yun Zhang

Influences of sintering temperature on microstructure and electrical properties of TiO2 varistor ceramics were investigated. Morphologies of TiO2 ceramics samples were characterized using scanning electron microscope. The phase composition and crystal structure were researched by X-ray diffraction. The frequency dependences of the samples capacitance were determined using LCR meter, the varistor voltage V1mA and nonlinear coefficient α were discussed by experimental method. The results showed that TiO2 ceramics sintered at 1350°C for 2 h possesses fine microstructure and optimal electrical properties. However, the electrical properties of samples will deteriorate as excessive sintering temperature.

2007 ◽  
Vol 26-28 ◽  
pp. 243-246
Author(s):  
Xing Hua Yang ◽  
Jin Liang Huang ◽  
Xiao Wang ◽  
Chun Wei Cui

BaBi4-xLaxTi4O15 (BBLT) ceramics were prepared by conventional solid phase sintering ceramics processing technology. The crystal structure and the microstructure were detected by X-ray diffraction (XRD) and scanning electron microscope (SEM). The XRD analyses show that La3+ ions doping did not change the crystal structure of BBT ceramics. The sintering temperature increased from 1120°C to 1150°C with increasing Lanthanum content from 0 to 0.5, but it widened the sintering temperature range from 20°C to 50°C and refined the grain size of the BBT ceramic. Additionally, polarization treatment was performed and finally piezoelectric property was measured. As a result, the piezoelectric constant d33 of the 0.1at.% doped BBLT ceramics reached its highest value about 22pc/N at polarizing electric field of 8kV/mm and polarizing temperature of 120°C for 30min.


2020 ◽  
Author(s):  
Yongcheng Lu ◽  
Yuanxun Li ◽  
Daming Chen ◽  
Rui Peng ◽  
Qinghui Yang ◽  
...  

Abstract In order to explore an economical functional phase alternative material for thick film resistors, the crystal structure, microstructure, and electrical properties of (1-x)LSCN + xLCNZ (x = 0.0–1.0) composite ceramics were studied through solid-state reaction experiments. The composite ceramics were characterized by x–ray diffraction, scanning electron microscopy, energy dispersive x–ray spectroscopy, and DC four–probe method. Results suggested that the main phases of LSCN and LCNZ were formed, along with a small part of impurity phases. The addition of LCNZ to LSCN decreased the electrical conductivity and changed the TCR from positive to negative. Zero TCR could be achieved around 0.6 < x < 0.8 and relatively low absolute TCR values could be obtained for the samples of 0.4 ≤ x ≤ 0.8. The ceramic of 0.6LSCN + 0.4LCNZ showed the optimal performances of conductivity = 1923 S/cm, TCR = 379.54 ppm/℃, and relative density = 95.05%.


2011 ◽  
Vol 495 ◽  
pp. 190-193 ◽  
Author(s):  
Mehdi Mirzayi ◽  
Mohammad Hoseen Hekmatshoar ◽  
Abdolazim Azimi

Nanometer-sized ZnO powder was synthesized at low decomposing temperature by polyacrylamide-gel method where Acrylamide was used as monomer, and N,N-methylene-bisacrylamide as lattice reagent. The characteristic of powders were studied by X-ray diffraction and scanning electron microscope (SEM). The results indicated uniform distribution of nanoZnO particles. Also electrical properties were investigated at different sintering temperatures of 800, 900 and 1000 ° C. It was observed that increase in sintering temperature, resulted in increase in the grain size of the varistor ceramics. The observed nonlinearity in current – voltage characteristic was explained by the existence of potential barrier at the grain boundaries and lowering of the barriers.


2010 ◽  
Vol 105-106 ◽  
pp. 320-323 ◽  
Author(s):  
Ming Zou ◽  
Yuan Wang ◽  
Yan Yan Chen ◽  
Yun Zhang

In this paper, the TiO2-based varistor ceramics added different donor additives were prepared and their propreties had been compared. The effects of added methods and added amounts of V2O5 (Nb2O5, or Ta2O5) on the microstructure, dielectric and varistor properties of TiO2 double functional ceramics were investigated. The ceramic phase and the microstructure of the disks were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). The frequency dependences of the samples capacitance (C), the dielectric loss (tanδ) were determined on LCR meter, and the varistor voltage V1mA was measured by using FC-2G meter. It is found that the proper amount of V2O5, Nb2O5 or Ta2O5 additves can promote the growth of the crystal and the formation of the grain boundary layer at a different extent. Meanwhile, the proper addition amount can increases the nonlinear exponent and the dielectric constant, but decreases the breakdown voltage. It can also improve the sintering properties of the samples.


2021 ◽  
Vol 19 (3) ◽  
pp. 56-61
Author(s):  
Bilal Ahmed Omar ◽  
Rabab Shakour Ali

The ferritic nanocomposite which prepared has the chemical formula of (Co0.25𝑁𝑖0.25Zn0.5LaxFe2−xO4), for different values of (X= 0, 0. 25, 0. 5, 0. 75), by using the spontaneous combustion-gel method, where calcination had been at temperature of (700˚C) for two hours; then studied the structural properties of the resulting ferrite via X-Ray diffraction (XRD), and Scanning Electron Microscopy (SEM) The results denote that the ferrite has a unique phase with a spinal-shaped crystal structure and a granular size are (23-36) nm, with increase in lattice constant of decrease in porosity, and electrical properties were also take in to consideration, like value of dielectric constant, the loss coefficient also observed via increase the frequency. The alternating electrical conductivity (σa.c) increases with increasing frequency.


2017 ◽  
Vol 866 ◽  
pp. 287-290
Author(s):  
Thanawat Kytae ◽  
Krit Sutjarittangtham ◽  
Theerapol Thurakitseree ◽  
Wilaiwan Leenakul

This research studied the effect of the different preparation technique on phase transition and electrical properties of Ba0.8Sr0.2TiO3. The samples compared 3 preparation technique, there are conventional mix-oxide, molten-salt and seed-induced method. The samples prepared by molten-salt calcined at 800 °C, the samples prepared by conventional mix-oxide and seed-induced method was calcined at 1200 °C for 3 h. All of samples sintered at 1400 °C for 3 h. The phase formation and morphology of samples were characterized via X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The dielectric properties of the samples were measurement by LCR-meter.


2021 ◽  
pp. 1-6
Author(s):  
Mariana M. V. M. Souza ◽  
Alex Maza ◽  
Pablo V. Tuza

In the present work, LaNi0.5Ti0.45Co0.05O3, LaNi0.45Co0.05Ti0.5O3, and LaNi0.5Ti0.5O3 perovskites were synthesized by the modified Pechini method. These materials were characterized using X-ray fluorescence, scanning electron microscopy, and powder X-ray diffraction coupled to the Rietveld method. The crystal structure of these materials is orthorhombic, with space group Pbnm (No 62). The unit-cell parameters are a = 5.535(5) Å, b = 5.527(3) Å, c = 7.819(7) Å, V = 239.2(3) Å3, for the LaNi0.5Ti0.45Co0.05O3, a = 5.538(6) Å, b = 5.528(4) Å, c = 7.825(10) Å, V = 239.5(4) Å3, for the LaNi0.45Co0.05Ti0.5O3, and a = 5.540(2) Å, b = 5.5334(15) Å, c = 7.834(3) Å, V = 240.2(1) Å3, for the LaNi0.5Ti0.5O3.


2012 ◽  
Vol 476-478 ◽  
pp. 1031-1035
Author(s):  
Wei Min Liu ◽  
Xing Ai ◽  
Jun Zhao ◽  
Yong Hui Zhou

Al2O3-TiC-ZrO2ceramic composites (ATZ) were fabricated by hot-pressed sintering. The phases and microstructure of the composites were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The relative density and mechanical properties (flexural strength, fracture toughness and Vicker’s hardness) of the composites were tested. The results show that the microstructure of the composites was the gray core-white rim. With the increase of sintering temperature, the relative density and mechanical properties of the composites increased first and then decreased. The composite sintered at 1705°C has the highest synthetical properties, and its relative density, flexural strength, fracture toughness and Vickers hardness are 98.3%,970MPa,6.0 MPa•m1/2and 20.5GPa, respectively.


2014 ◽  
Vol 1061-1062 ◽  
pp. 83-86
Author(s):  
Hong Wu ◽  
De Yi Zheng

In this paper, the effects of different sintering temperature on the microstructure and piezoelectric properties of Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3(PNZZT) ceramic samples were investigated. The Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3 ceramics materials was prepared by a conventional mixed oxide method. In the period of the experiment, the relationship between crystallographic phase and microstructure were analyzed by X-ray diffraction(XRD) and scanning electron microscopy(SEM) respectively. The XRD patterns shows that all of the ceramic samples are with a tetragonal perovskite structure. Along with sintering temperature increased and the x is 0.03, the grain size gradually become big. Through this experiment, it has been found that when the x is 0.03 and sintered at 1130°C for 2 h, the grains grow well, the grain-boundary intersection of the sample combined well and the porosity of the ceramics decreased, an excellent comprehensive electrical properties of the Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3 samples can be obtained. Its best electrical properties are as follows: dielectric constant (ε) is 1105, dielectric loss(tg) is 0.017, electromechanical coupling coefficient (Kp) is 0.287, piezoelectric constant(d33) is 150PC/N


2015 ◽  
Vol 5 (01) ◽  
pp. 31
Author(s):  
Resky Irfanita ◽  
Asnaeni Ansar ◽  
Ayu Hardianti Pratiwi ◽  
Jasruddin J ◽  
Subaer S

The objective of this study is to investigate the effect of sintering temperature on the synthesis of SiC produced from rice husk ash (RHA) and 2B graphite pencils. The SiC was synthesized by using solid state reaction method sintered at temperatures of 750°C, 1000°C and 1200°C for 26 hours, 11.5 hours and 11.5 hours, respectively. The quantity and crystallinity level of SiC phase were measured by means of Rigaku MiniFlexII X-Ray Diffraction (XRD). The microstructure of SiC was examined by using Tescan Vega3SB Scanning Electron Microscopy (SEM). The XRD results showed that the concentration (wt%) of SiC phase increases with the increasing of sintering temperature. SEM results showed that the crystallinity level of SiC crystal is improving as the sintering temperature increases


Sign in / Sign up

Export Citation Format

Share Document