Simulation of the Surface Roughness by End Face Grinding Wheel with Ordered Abrasive Pattern

2015 ◽  
Vol 1095 ◽  
pp. 898-901
Author(s):  
Xing Shan Li ◽  
Mei Li Shao ◽  
Jun Wang ◽  
Yu Shan Lu

In order to improve the grinding performance of end face grinding wheel, the ordered theory is applied to the design of grinding wheel. Based on the track equation of the end grinding, the effects of grinding parameters on the surface roughness are studied and compared with the workpiece appearance by grinding wheel with different abrasive patterns. The simulation results show that the surface roughness values are lower by the grinding wheel with phyllotactic pattern than other patterns. It will provide theoretical basis for designing abrasive ordered pattern of grinding wheel.

2014 ◽  
Vol 670-671 ◽  
pp. 543-547 ◽  
Author(s):  
Xing Shan Li ◽  
Mei Li Shao ◽  
Jun Wang ◽  
Yu Shan Lu

In order to improve the performance of end face grinding wheel, the phyllotaxis theory is introduced into the design of the wheel. Meanwhile the movement track equation of the end grinding is established, and the effects of the phyllotactic coefficient on the grinding surface roughness are studied. The simulation results show that the lower surface roughness values can be obtained when choosing reasonable phyllotactic coefficient. It will provide theoretical basis for the ordered abrasive patterns of the end grinding wheel.


2015 ◽  
Vol 713-715 ◽  
pp. 90-94
Author(s):  
Long Xiang ◽  
Yu Shan Lu ◽  
Jun Wang ◽  
Zhi Zhen Liu ◽  
Shan Zhang ◽  
...  

In the area of grinding, ordering the abrasive gains is one of the key ways to improve the grinding wheel performance. In this article, the experimental investigations on the grinding temperature were carried out including using the superhard abrasive grinding wheel with phyllotactic, matrix, dislocation and disordered configuration, the temperature distribution of the grinding workpiece surface and the effects of grinding parameters on the temperature of workpiece surface have been obtained. The experimental results showed that the grinding temperature can be reduced efficiently by choicing the grinding wheel with abrasive phyllotactic pattern.


2016 ◽  
Vol 1136 ◽  
pp. 9-14
Author(s):  
Yun Guang Zhou ◽  
Ya Dong Gong ◽  
Yang Sun ◽  
Zhong Xiao Zhu ◽  
Qi Gao

This paper uses micro-grinding tool with 500# grains and 0.9 mm diameter to grind nickel-based superalloy Inconel600 through three factors(grinding depth, feed rate, spindle speed ) at three levels orthogonal grinding experiment in mesoscopic scale. Then according to the range analysis of surface roughness, the primary and secondary influencial factors are found; the micro grinding parameters are optimized ,the results show: the influence of the feed rate(vf)is the biggest, followed by the spindle speed(n), the grinding depth(ap) is minimal, when n=50kr/min, vf=100μm/s, ap=6μm, the grinding surface roughness is minimum: Ra=579nm; finally , the regression mathematical model of micro grinding surface roughness is established, the relative error of the calculated value and experimental measurements is low, showing that this regression mathematical model is accurate and effective. This study provides a theoretical basis for the micro grinding parameters and surface quality control of nickel-based superally.


2012 ◽  
Vol 472-475 ◽  
pp. 2354-2360 ◽  
Author(s):  
Yu Shan Lu ◽  
Cheng Yi Zhao ◽  
Jun Wang ◽  
Yan He ◽  
Zhi Hui Kou

In order to achieve the controllability of the abrasive arrangement on the working surface of grinding wheel,a new kind of the superabrasive grinding wheel, which has defined abrasive grain cluster pattern, has been designed based on the phyllotaxis theory of biology, and fabricated with UV lithography method and electroplating technology. The analytical results indicate that the phyllotactic parameters influence on the abrasive arrangement configuration on the work surface of the superabrasive grinding wheel, so as to improve grinding performance of the grinding wheel, increasing the diameter of phyllotactic abrasive grain cluster and decreasing phyllotactic coefficient can increases the abrasive grain density of the surperabrasive grinding wheel surface. Electroplating experimental results show that the reasonable electroplating processes can reduce the faults of defined abrasive arrangement on the superabrasive grinding wheel surface.


1978 ◽  
Vol 100 (3) ◽  
pp. 297-302 ◽  
Author(s):  
T. Murray ◽  
S. Malkin

An investigation is described of the effects of rotary dressing on grinding wheel performance. Grinding performance is evaluated mainly in terms of the grinding forces and surface finish. It is demonstrated that the magnitudes of the grinding forces can be attributed to differences in the size of the wear flat area obtained by the various rotary dressing conditions. For finer dresser infeeds and greater differences between the peripheral velocities of the dresser and the grinding wheel, bigger grinding forces and smoother surfaces are obtained. A direct relationship is obtained between the grinding performance and the dressing interference angle, a larger angle resulting in smaller grinding forces and rougher surfaces. This leads to a trade-off relationship between grinding forces and surface roughness which characterizes the rotary dressing process.


2013 ◽  
Vol 405-408 ◽  
pp. 3302-3306
Author(s):  
Ming Yi Tsai ◽  
Shi Xing Jian ◽  
J. H. Chiang

Grinding, a technique for removing abrasive materials, is a chip-removal process that uses an individual abrasive grain as the cutting tool. Abrasive material removal processes can be very challenging owing to the high power requirements and the resulting high temperatures, especially at the workpiece-wheel interface. This paper presents a novel system that uses graphite particles impregnated in an aluminum oxide matrix to form a grinding wheel. This study specifically investigated grinding wheels with a graphite content of 0.5 wt%. The new grinding wheel was compared with conventional grinding wheels by comparing the factors of grinding performance, such as surface roughness, morphology, wheel wear ratio, grinding temperature, and grinding forces, when the wheels were used under two different coolant strategiesdry and with minimum quantity lubrication (MQL) using pure water. This study found that there is a considerable improvement in the grinding performance using graphite-impregnated grinding wheels over the performance obtained using conventional grinding wheels. The use of 0.5 wt% graphite provided better surface roughness and topography, lower grinding temperature, and decreased force; in addition, wheel consumption was lower, resulting in extended wheel life.


2009 ◽  
Vol 626-627 ◽  
pp. 11-16 ◽  
Author(s):  
Yung Cheng Wang ◽  
Chen Hsiang Chen ◽  
Bean Yin Lee

Due to the rapid development in recent cutting technology, demands for different types of precise cutting tools become increasingly complicated. Since the design and grinding of end-mills are the last and the most important processing for cutting tools. The geometrical accuracy and the cutting performance of an end-mill depend essentially on the grinding. However, the complicated geometry of an end-mill will be ground by the specific software of CAD/CAM on the 5-axis CNC tool grinding machine. The precision of end-mill grinder will be determined by the performance of 5-axis CNC tool grinder and setting of grinding parameters. Three regulation factors for grinding are grit size of the diamond grinding wheel, grinding speed and the feeding speed. The variable ranges of each parameter can be divided in large, medium and small interval. In this study for an end-mill with fixed geometrical profile, a series of different grinding parameters have been utilized by the 33 factorial experiment planning. And tool grinding experiments for the rod material specification of tungsten carbide have been performed by 5-axis CNC tool grinder. After grinding, surface roughness of tools will be measured. The reliability and precision of the end-mill grinding can be enhanced by the prediction model of polynomial network for surface roughness of end-mills. Besides, the database system for cutting tool has benn established. Totally 4802 data were constructed in the relational database according to the characteristics of tools.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1352 ◽  
Author(s):  
Shengyong Zhang ◽  
Genbao Zhang ◽  
Yan Ran ◽  
Zhichao Wang ◽  
Wen Wang

(1) The alloy material 20CrMnTiH is widely used in gear manufacturing, but difficult to process, and its quantity (efficiency) and quality (surface quality) are generally negative correlation indicators. As a difficult but realistic problem, it is of important practical significance to explore how to efficiently grind high-precision low-carbon alloy gear workpieces. (2) Firstly, the pixel method was applied to analyze the grinding principles and explore the grinding parameters—the grinding wheel speed and grinding wheel frame moving speed—as well as the feed rate, which impacts the grinding indicators. Secondly, based on the ceramic microcrystalline corundum grinding wheel and the 20CrMnTiH gear workpiece, controlled experiments with 28 groups of grinding parameters were conducted. Moreover, the impact curves of the grinding parameters on the grinding indicators—the grinding efficiency, grinding wheel life, and surface roughness—were obtained by the multiple linear regression method. Finally, the multi-objective optimization method was used to comprehensively optimize the grinding process. (3) Compared with the traditional grinding process, under optimized grinding parameters, the 20CrMnTiH gear workpieces have a lower surface roughness and a longer grinding wheel life, and require a shorter time to achieve grinding accuracy. (4) The grinding experiments showed that the grinding parameters are linearly related to the grinding indicators. The optimization results show that the precision, efficiency, and economy of the 20CrMnTiH gear grinding process have been improved via the comprehensive optimization of the grinding parameters.


2018 ◽  
Vol 5 (5) ◽  
pp. 171906 ◽  
Author(s):  
Dinesh Kumar Patel ◽  
Deepam Goyal ◽  
B. S. Pabla

Surface integrity has attracted the attention of researchers for improving the functional performance of engineering products. Improvement in surface finish, one of the important parameters in surface integrity, has been attempted by researchers through different processes. Grinding has been widely used for final machining of components requiring smooth surfaces coupled with precise tolerances. Proper selection of grinding wheel material and grade with grinding parameters can result in an improved surface finish and improved surface characteristics. The present work reports the study of the effect of grinding parameters on surface finish of EN8 steel. Experiments were performed on surface grinding and cylindrical grinding for optimization of grinding process parameters for improved surface finish. Grinding wheel speed, depth of cut, table feed, grinding wheel material and table travel speed for surface grinding operation, and work speed for cylindrical grinding operation were taken as the input parameters with four types of grinding wheels (Al 2 O 3 of grades K and L, and white alumina of grades J and K). The surface roughness was taken as an output parameter for experimentation. The grinding wheel material and grade have been observed to be the most significant variables for both cylindrical grinding and surface grinding. Surface roughness in the case of surface grinding is better compared to that of cylindrical grinding, which can be attributed to vibrations produced in the cylindrical grinding attachment. Surface roughness ( R a ) values of 0.757 µm in cylindrical grinding and 0.66 µm in surface grinding have been achieved.


Sign in / Sign up

Export Citation Format

Share Document