Synthesis of Carbon Nanoparticles via Co-Pyrolysis of Waste Slop Oil and Ferrocene

2015 ◽  
Vol 1103 ◽  
pp. 97-103 ◽  
Author(s):  
Weerawut Chaiwat ◽  
Teerameth Janjarasskul ◽  
Apiluck Eiad-Ua ◽  
Nawin Viriya-Empikul ◽  
Tawatchai Charinpanitkul ◽  
...  

Co-pyrolysis of slop oil with ferrocene was carried out to convert waste of petroleum into carbon nanoparticles (CNPs). Since slop oil is a mixture of hydrocarbons (HCs) with broad molecular weight distribution, it could be simply fractionated into some certain fractions by batch distillation. Distillate containing hydrocarbons with small molecules was mainly focused as an alternative carbon source for synthesis of CNPs. A two-stage furnace was employed for evaporating a mixture of distillated slop oil and ferrocene at 200 °C in the 1st stage of the furnace and then formation of CNPs at 900 °C could be observed in the 2nd stage. Laboratory-grade ferrocene was mixed with slop oil with a designated weight-ratio of 1:2. Microscopic analyses based on SEM and TEM micrographs reveals that CNPs obtained from distillated slop oil mostly consist of bundles of multi-walled carbon nanotubes (MWCNTs) with nominal diameters of 20-50 nm. Raman spectroscopic analyses of the synthesized CNPs exhibit the notably high value of IG/ID, suggesting that the synthesized CNPs preferably consist of graphitic nanostructure. Moreover, TGA analysis shows that 39.8 and 32.9 wt% of Fe contents exist in the CNP samples synthesized from original slop oil and distillated slop oil, respectively.

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Shuang-Xi Xue ◽  
Qin-Tao Li ◽  
Xian-Rui Zhao ◽  
Qin-Yi Shi ◽  
Zhi-Gang Li ◽  
...  

Multi-walled carbon nanotubes (MWCNTs) were irradiated by 1.2 keV Ar ion beams for 15–60 min at room temperature with current density of 60 µA/cm2. The morphology and microstructure are investigated by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. The results show that carbon nanofibers are achieved after 60 min ion irradiation and the formation of carbon nanofibers proceeds through four periods, carbon nanotubes—amorphous carbon nanowires—carbon nanoparticles along the tube axis—conical protrusions on the nanoparticles surface—carbon nanofibers from the conical protrusions.


2017 ◽  
Vol 730 ◽  
pp. 221-225
Author(s):  
Mohamed Bassyouni ◽  
Shereen M.S. Abdel-Hamid ◽  
Mohamed H. Abdel-Aziz ◽  
M.Sh. Zoromba

In this study, vinyl ester –Jute fiber biocomposites were prepared using vacuum-assisted resin infusion (VARI) process. Woven Jute fibers were used with mass fraction 0.68. Multi-walled carbon nanotubes (MWCNTs) are added to the resin with weight ratio 0.5: 99.5 to investigate the thermo-mechanical properties of bio-composites. Storage and loss modulus of vinyl ester bio-composites were investigated in the presence MWCNTs over a range of temperature (25 to 160 oC) to measure the capacity of bio-composite to store and dissipate energy. Damping properties of vinyl ester bio-composites were studied in terms of tan (d). Viscoelastic test using dynamic mechanical analysis (DMA) showed that the glass transition temperature increases with the addition of MWCNTs up to 112.4 oC. Addition of jute fiber reinforcements improves the storage modulus value of vinyl ester more than 65% at room temperature. Significant improvement in storage modulus was found in the presence of MWCNTs.


2016 ◽  
Vol 8 (21) ◽  
pp. 4204-4210 ◽  
Author(s):  
Shufang Li ◽  
Jianying Qu ◽  
Yong Wang ◽  
Jianhang Qu ◽  
Huijuan Wang

Carbon nanoparticles (CNs) were successfully synthesized at room temperature, which were used to construct a novel electrochemical sensor combined with multi-walled carbon nanotubes and chitosan.


2016 ◽  
Vol 20 (08n11) ◽  
pp. 935-949 ◽  
Author(s):  
Kentaro Mase ◽  
Shoko Aoi ◽  
Kei Ohkubo ◽  
Shunichi Fukuzumi

The conversion of solar energy into chemical energy by the reduction of small molecules provides a promising solution for the effective energy storage and transport. In this manuscript, we have highlighted our recent researches on the catalysis of cobalt-macrocycle complexes for the reduction of O2, proton and CO2. We have successfully clarified the reaction mechanisms of catalytic O2 reduction with cobalt phthalocyanine (Co[Formula: see text](Pc)) and cobalt chlorin (Co[Formula: see text](Ch)) based on detailed kinetic study under homogeneous conditions. The presence of proton-accepting moieties on these macrocyclic ligands enhances the electron-accepting ability, leading to the efficient catalytic two-electron reduction of O2 to produce hydrogen peroxide (H2O[Formula: see text] with high stability and less overpotential in acidic solutions. When Co[Formula: see text](Ch) is adsorbed on multi-walled carbon nanotubes (MWCNTs) and employed as an electrocatalyst, CO2 was successfully reduced to form CO with a Faradaic efficiency of 89% at an applied potential of -1.1 V vs. NHE in an aqueous solution. Finally, photocatalytic H2 evolution was attained from ascorbic acid with Co[Formula: see text](Ch) as a catalyst and [Ru(bpy)3][Formula: see text] (bpy [Formula: see text] 2,2[Formula: see text]-bipyridine) as a photocatalyst via a one-photon two-electron process.


2018 ◽  
Vol 150 ◽  
pp. 06014 ◽  
Author(s):  
Y. S. Lee ◽  
F. H. Wee ◽  
K. Y. You ◽  
C. Y. Lee ◽  
Y. Y. Lee ◽  
...  

In this paper presents nano-composites based on polyester (PE) matrix with multi-walled carbon nanotubes (MWCNTs) as fillers have been developed for microwave absorbing materials. The MWCNTs/PE composite samples were fabricated with different weight ratio of MWCNTs (3 wt%, 5 wt%, and 10 wt%). The electromagnetic properties of different MWCNTs/PE composite have been determined by using rectangular waveguide technique and Agilent material measurement software. Moreover, the reflection loss (microwave absorption) of MWCNTs/PE composite have been calculated based on the basis of transmission line theory. The performance of electromagnetic properties and microwave absorption of MWCNTs/PE composite were analyzed in X-band frequency. The dielectric loss properties of the composite are increse with increasing in MWCNTs weight ratio. The microwave absorption results show that such 3 wt% MWCNTs/PE composites sample with 4 mm thickness has achieved less than -10 dB values (< 90 % microwave absorption) of reflection loss.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dženeta Dedić ◽  
Adrian Dorniak ◽  
Uwe Rinner ◽  
Wolfgang Schöfberger

Since decades, the global community has been facing an environmental crisis, resulting in the need to switch from outdated to new, more efficient energy sources and a more effective way of tackling the rising carbon dioxide emissions. The activation of small molecules such as O2, H+, and CO2 in a cost—and energy-efficient way has become one of the key topics of catalysis research. The main issue concerning the activation of these molecules is the kinetic barrier that has to be overcome in order for the catalyzed reaction to take place. Nature has already provided many pathways in which small molecules are being activated and changed into compounds with higher energy levels. One of the most famous examples would be photosynthesis in which CO2 is transformed into glucose and O2 through sunlight, thus turning solar energy into chemical energy. For these transformations nature mostly uses enzymes that function as catalysts among which porphyrin and porphyrin-like structures can be found. Therefore, the research focus lies on the design of novel porphyrinoid systems (e.g. corroles, porphyrins and phthalocyanines) whose metal complexes can be used for the direct electrocatalytic reduction of CO2 to valuable chemicals like carbon monoxide, formate, methanol, ethanol, methane, ethylene, or acetate. For example the cobalt(III)triphenylphosphine corrole complex has been used as a catalyst for the electroreduction of CO2 to ethanol and methanol. The overall goal and emphasis of this research area is to develop a method for industrial use, raising the question of whether and how to incorporate the catalyst onto supportive materials. Graphene oxide, multi-walled carbon nanotubes, carbon black, and activated carbon, to name a few examples, have become researched options. These materials also have a beneficial effect on the catalysis through for instance preventing rival reactions such as the Hydrogen Evolution Reaction (HER) during CO2 reduction. It is very apparent that the topic of small molecule activation offers many solutions for our current energy as well as environmental crises and is becoming a thoroughly investigated research objective. This review article aims to give an overview over recently gained knowledge and should provide a glimpse into upcoming challenges relating to this subject matter.


Author(s):  
N. Ya. Letniak ◽  
M. M. Korda

Introduction. Carbon nanoparticles have unique mechanical, electrical and thermal properties and are widely used in scientific research, industry and medicine. They are a promising nanomaterial for medical use due to their really high biocompatibility with blood, bones, cartilages and soft tissues. The capability of nanotubes to transport medicines and chemicals inside a cell predicts the possibility of the increase of classical substances toxicity in case of their intake into the body together with nanotubes.The aim of the study – to determine how nanoparticles affect the hepatotoxic properties of  tetrachloromethane.Research Methods. The experiments were performed on outbred male rats, which were administered intraperitoneally with 0.5 ml of suspension of single-walled, multi-walled or multi-walled functionalized by COOH nanotubes (60 mg/kg) separately or together with tetrachlormethane (2 ml/kg). The animals were taken out of the experiment in 3, 6 and 48 hours after the administration of the nanotubes and tetrachlormethane. Alanine and aspartate transaminases, alkaline phosphatase activities, as well as total protein and urea contents were measured in rat blood plasma.Results and Discussion. It has been shown that only multi-walled carbon nanotubes changed significantly  the studied parameters. The administration of tetrachloromethane to rats caused significant changes of all indices.Maximal changes of all parameters were registered in the group of animals that were coadministered with carbon nanotubes and tetrachloromethane. In this case, activities of transaminases and alkaline phosphatase in blood significantly changed compared to the similar indicators in the group of animals, which were administered with the chemical toxicant only.Conclusion. Carbon nanotubes enhance the negative hepatotoxic effects of tetrachlormethane.


2015 ◽  
Vol 69 (1) ◽  
Author(s):  
Jana Šefčovičová ◽  
Jaroslav Filip ◽  
Jan Tkac

AbstractVarious types of carbon nanoparticles were directly mixed with microbial cells of Gluconobacter oxydans within a 3-D bionanocomposite in order to prepare a highly sensitive ethanol biosensor with a short response time. From all carbonaceous nanomaterials tested, single- or multi-walled carbon nanotubes provided the highest sensitivity of detection (117-121 μA cm


Sign in / Sign up

Export Citation Format

Share Document