Characterization of Vinyl Ester/Jute Fiber Bio-Composites in the Presence of Multi-Walled Carbon Nanotubes

2017 ◽  
Vol 730 ◽  
pp. 221-225
Author(s):  
Mohamed Bassyouni ◽  
Shereen M.S. Abdel-Hamid ◽  
Mohamed H. Abdel-Aziz ◽  
M.Sh. Zoromba

In this study, vinyl ester –Jute fiber biocomposites were prepared using vacuum-assisted resin infusion (VARI) process. Woven Jute fibers were used with mass fraction 0.68. Multi-walled carbon nanotubes (MWCNTs) are added to the resin with weight ratio 0.5: 99.5 to investigate the thermo-mechanical properties of bio-composites. Storage and loss modulus of vinyl ester bio-composites were investigated in the presence MWCNTs over a range of temperature (25 to 160 oC) to measure the capacity of bio-composite to store and dissipate energy. Damping properties of vinyl ester bio-composites were studied in terms of tan (d). Viscoelastic test using dynamic mechanical analysis (DMA) showed that the glass transition temperature increases with the addition of MWCNTs up to 112.4 oC. Addition of jute fiber reinforcements improves the storage modulus value of vinyl ester more than 65% at room temperature. Significant improvement in storage modulus was found in the presence of MWCNTs.

2010 ◽  
Vol 150-151 ◽  
pp. 1413-1416 ◽  
Author(s):  
Hong Yan Chen ◽  
Zhen Xing Kong ◽  
Ji Hui Wang

The cure kinetics of Derakane 411-350, a kind of vinyl ester resin, and its suspensions containing multi-walled carbon nanotubes( MWCNTs) were investigated via non-isothermal dynamic scanning calorimetry (DSC) measurements. The results showed that incorporation of MWCNTs into vinyl ester resin excessively reduces polymerization degree and crosslinking density of vinyl ester resin. For suppressing the negative effect caused by nanotubes, the higher temperature initiator combined with the initiator MEKP was used. Dynamic-mechanical Behavior testing was then carried out on the cured sample in order to relate the curing behavior of MWCNTs modified resin suspensions to mechanical response of their resulting nanocomposites. It was revealed that nanocomposites containing MWCNTs possessed larger storage modulus values as well as higher glass transition temperatures (Tg) as compared to those without MWCNTs after using mixed intiators system to improve the degree of cure.


2017 ◽  
Vol 54 (1) ◽  
pp. 41-44 ◽  
Author(s):  
Maria Adina Vulcan ◽  
Celina Damian ◽  
Paul Octavian Stanescu ◽  
Eugeniu Vasile ◽  
Razvan Petre ◽  
...  

This paper deals with the synthesis of polyurea and its use as polymer matrix for nanocomposites reinforced with multi-walled carbon nanotubes (MWCNT). Two types of materials were obtained during this research, the first cathegory uses the polyurea as matrix and the second one uses a mixture between epoxy resin and polyurea. The nanocomposites were characterized by Thermogravimetric Analysis (TGA), Dynamic Mechanical Analysis (DMA), Scanning Electron Microscopy (SEM) and Tensile Tests .The elastomeric features of nanocomposites were highlighted by the results which showed low value of Tg. Also higher thermal stability with ~40oC compared with commercial products (M20) were observed, but lower mechanical properties compared to neat polyurea.


2007 ◽  
Vol 1056 ◽  
Author(s):  
A. Kanapitsas ◽  
E. Logakis ◽  
C. Pandis ◽  
I. Zuburtikudis ◽  
P. Pissis ◽  
...  

ABSTRACTThe purpose of this work is to examine the dielectric, electrical and thermo-mechanical properties of multi-walled carbon nanotubes (MWCNT) filled polypropylene nanocomposites formed by melt-mixing. To that aim dielectric relaxation spectroscopy (DRS) and dymamic mechanical analysis (DTMA) were employed. The results are discussed in terms of nucleating action of MWCNT and interfacial polymer-filler interactions. Special attention is paid to percolation aspects by both ac conductivity measurements for the samples which are above the percolation threshold and permittivity measurements for the samples which are below percolation threshold.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1356 ◽  
Author(s):  
Danyang Li ◽  
Rui Wang ◽  
Xing Liu ◽  
Shu Fang ◽  
Yanli Sun

The excellent mechanical property and light weight of protective materials are vital for practical application in body armor. In this study, O2-plasma-modified multi-walled carbon nanotubes (M-MWNTs) were introduced into shear-thickening fluid (STF)-impregnated Kevlar woven fabrics to increase the quasi-static stab resistance and decrease the composite weight. The rheological test showed that the addition of 0.06 wt. % M-MWNT caused a marked increase in the peak viscosity from 1563 to 3417 pa·s and a decrease in the critical shear rate from 14.68 s−1 to 2.53 s−1. The storage modulus (G′) and loss modulus (G″) showed a higher degree of abrupt increase with the increase of shear stress. The yarn pull-out test showed that the yarn friction of M-MWNT/STF/Kevlar fabrics was far superior to the original fabrics. Importantly, under similar areal density, the M-MWNT/STF/Kevlar fabrics could resist 1261.4 N quasi-static stab force and absorb 41.3 J energy, which were much higher than neat Kevlar fabrics. The results of this research indicated that quasi-static stab resistance was improved by M-MWNTs, which was attributed to the excellent shear-thickening effect and the high yarn friction. Therefore, M-MWNT/STF/Kevlar fabrics have a broad prospect in the fields of body protection.


2019 ◽  
Vol 31 (9) ◽  
pp. 1943-1948
Author(s):  
Priyabrata Mohanty ◽  
Tapan Kumar Bastia ◽  
Dibakar Behera ◽  
Shivkumari Panda

This work represents the preparation and characterization of some unique properties of vinyl ester (VE) and unsaturated polyester (UPE) blend based nanocomposites by introducing biopolymer chitosan grafted multi-walled carbon nanotubes (MWCNTs). Initially, surface grafting of MWCNTs with chitosan was performed by utilizing glutaraldehyde as a cross linking reagent through covalent deposition method and are successfully characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy(SEM). Then 50:50 wt % of vinyl ester and unsaturated polyester blend was prepared by simple sonication method. Three different specimens of VE/UPE/CS-g-MWCNTs nanocomposites were fabricated with addition of 1, 3 and 5 wt % of functionalized bionanofiller. Chitosan grafting of MWCNTs offered enhanced properties to the nanocomposites suggesting homogeneous distribution of the nanofiller in the matrix with minimum corrosion and swelling properties. 3 wt % of functionalized bionanofiller loading showed superior essential characteristics and after that the properties reduced may be due to the nucleating tendency of the nanofiller particles.


2021 ◽  
pp. 026248932110172
Author(s):  
Fukai Yang ◽  
Miao Xie ◽  
Zhang Yudi ◽  
Xinyu Xu

We report flexible polyurethane foams (PUFs) containing –OH functionalized multi-walled carbon nanotubes (MWCNTs) with different diameters (10–20 nm, 20–30 nm, >50 nm) from 0.1–0.6 wt% (per 100 resins of polyol by weight) prepared via in situ polymerization. After synthesis, the morphology of the MWCNT/PUF composites was observed through scanning electron microscopy (SEM) based on MWCNT amount. The MWCNTs acted as nucleating agents and increased the matrix viscosity. The pore size of the composites decreased and the number of pores increased with increasing MWCNT concentration. Dynamic mechanical analysis (DMA) showed that the storage modulus of the composites increased, the loss modulus decreased, and the Tg gradually decreased with increasing MWCNT content. The incorporation of MWCNTs induced remarkable thermal stabilization of the matrix. The increase in the degradation temperature from 294°C to 304°C resulted in a 50% weight loss. The mechanical properties of the MWCNT/PUF materials increased with increasing MWCNT proportion because of the excellent compatibility and strong interface interaction between the MWCNT and flexible PUF.


2010 ◽  
Vol 19 (5) ◽  
pp. 096369351001900 ◽  
Author(s):  
Zhujuan Wang ◽  
Emiliano Bilotti ◽  
Ton Peijs

This study compares the reinforcing efficiency of multi-walled carbon nanotubes (MWNTs) and single-walled carbon nanotubes (SWNTs) in polycarbonate (PC) films processed using melt-compounding followed by hot-pressing. The effect of carbon nanotube (CNT) type on composite properties is studied by means of dynamic mechanical analysis (DMA). Composite theory is used to analyse the results. It is found that, despite the good dispersion and interfacial interactions reported in the literature for PC/CNT nanocomposites, SWNTs and MWNTs efficiently reinforce PC only at nanofiller contents below 0.3 wt.% and 0.5 wt.%, respectively. Nevertheless, effective moduli of CNTs (in particular SWNT) close to the theoretical values were achieved for low nanofiller content.


2017 ◽  
Vol 898 ◽  
pp. 2384-2391
Author(s):  
Jin Zhu ◽  
Biao Wang

Multi-walled carbon nanotubes (MWCNTs)/acrylonitrile butadiene styrene (ABS) nanocomposites were prepared by melt blending and then filaments were obtained by melt extrusion method. The Scanning electron microscope (SEM) exhibited good dispersion of MWCNTs in the SAN phase of the ABS matrix. The rheological results showed that incorporation of MWCNTs into ABS resulted in higher storage modulus (G′) and loss modulus (G′′) than those of ABS, especially at low frequencies. The tensile strength and modulus of MWCNT/ABS nanocomposite filaments substantially increased with the MWCNTs content while the elongation at break decreased. Additionally, the addition of MWCNTs decreased the coefficient of linear thermal expansion. This study provides a basis for further development of MWCNT/ABS nanocomposites used for FDM process with desirable mechanical properties and good dimension stability.


Sign in / Sign up

Export Citation Format

Share Document