Synthesis and Characterization of Silk Fibre Reinforced Cepu Composites

2010 ◽  
Vol 123-125 ◽  
pp. 391-394 ◽  
Author(s):  
T.M. Mruthyunjaya Swamy ◽  
Manjula Koregala Sidde Gowda ◽  
Siddaramaiah ◽  
Joong Hee Lee

Composites of silk fibre reinforced chain extended polyurethane (CEPU) was synthesized by the reaction of castor oil with different diisocyanates and glutaric acid as chain extender. The effect of incorporation of silk fibre into neat CEPU on the physico- mechanical properties and thermal behaviours (TGA and DMA) has been investigated. The incorporation of silk fibre into CEPUs resulted in an enhancement of tensile strength and Tg. The effects of biological fluids and salt solution on swelling behavior of CEPU biocomposites were reported. Key words: Castor oil, silk fibre, composites, polyurethane, DMA, TGA.

2015 ◽  
Vol 1105 ◽  
pp. 51-55 ◽  
Author(s):  
K.M. Gupta ◽  
Kishor Kalauni

Bhimal fibres are quite a newer kind of bio-degradable fibres. They have never been heard before in literatures from the view point of their utility as engineering material. These fibres have been utilized for investigation of their properties. Characterization of this fibre is essential to determine its properties for further use as reinforcing fibre in polymeric, bio-degradable and other kinds of matrix. With this objective, the fabrication method and other mechanical properties of Bhimal-reinforced-PVA biocomposite have been discussed. The stress-strain curves and load-deflection characteristics are obtained. The tensile, compressive, flexure and impact strengths have been calculated. The results are shown in tables and graphs. The results obtained are compared with other existing natural fibre biocomposites. From the observations, it has been concluded that the tensile strength of Bhimal-reinforced-PVA biocomposite is higher than other natural fibre composites. Hence these can be used as reinforcement to produce much lighter weight biocomposites.


2015 ◽  
Vol 1 (01) ◽  
pp. 67-70
Author(s):  
A. Malar Retna

The chain extended polyurethane was synthesized by reacting castor oil based polyol with 4,4’-methylenebis(cyclohexyl) isocyanate and chain extender such as malonic acid. The composites have been fabricated by incorporating the coir fiber into the neat polyurethane. The polyurethane and its composites were characterized with respect to their mechanical properties such as hardness, tensile strength, percentage elongation and Young’s modulus. The morphology of neat polyurethane and its composites with coir fiber was studied using scanning electron microscope (SEM). These studies revealed the high performance character of the polyurethane composites with respect to the corresponding neat polyurethane.


2018 ◽  
Vol 213 ◽  
pp. 03001 ◽  
Author(s):  
Ruth R. Aquino ◽  
Marvin S. Tolentino ◽  
Niel Karl G. Arcamo ◽  
John Patrick N. Gara ◽  
Blessie A. Basilia

Membrane technology is widely used in many separation processes because of its multi-disciplinary characteristics. One of the techniques that is used in the fabrication of membranes is the electrospinning process which can create nanofibers from a very wide range of polymeric materials. In this study, electrospun nanostructured fibrous composite membranes of polysulfone (PSU), commercial halloysite (COM-HAL), and Philippine halloysite (PH-HAL) were synthesized. The concentrations of COM-HAL and PH-HAL were both varied from 0.5%, 1%, and 2%. The FTIR results showed that there were changes in the intensity of the PSU-IR spectra which confirmed the presence of COM-HAL and PH-HAL in the synthesized membranes. The SEM revealed that nanofibers can be successfully produced by the addition of LiCl salt in PSU with varying HAL concentrations. Also, it was observed that the addition of HAL with varying concentrations have no significant effect on wettability due to the strong hydrophobic character of the PSU membrane. Moreover, it was found from the analysis of mechanical properties that the tensile strength of the membranes weakened by the addition of HAL due to its weak interaction with PSU.


2016 ◽  
Vol 846 ◽  
pp. 673-678 ◽  
Author(s):  
Nurul Aina Ismail ◽  
Syuhada Mohd Tahir ◽  
Yahya Norihan ◽  
Muhamad Firdaus Abdul Wahid ◽  
Nur Ezzati Khairuddin ◽  
...  

This study was carried out to evaluate the potential of plastic synthesized using bio-based starch. The method began with extraction of starch from chosen tubers with high content of starch; potato and yam. The samples were first grated, grinded and strained to obtain crude starch, which then centrifuged and rinsed to get pure starch. The starch was then reacted with hydrochloric acid to breakdown amylopectin to prevent the starch from becoming plastic-like. Finally, propan-1,2,3-triol was added as a plasticizer to increase the elasticity of the product. The chemical, mechanical, and thermal properties of the products were analyzed using Fourier transform infrared (FTIR), tensile strength tester and Thermogravimetric analysis (TGA). The FTIR spectra of the product displayed the presence of O-H, C-H, C=O and C-O absorption peaks, which indicate the formation of bioplastic has already occured. The tensile strength obtained for potato and yam starch-based bioplastic are 0.6 MPa and 1.9 MPa, respectively. The result gained from TGA showed that 50% weight loss occurred at 250°C for potato and 310°C for yam-based plastic. The highly biodegradability of the plastic was proven using soil burial test, which observed the percentage of soil biodegradation for potato and yam-based bioplastic in 1 week duration is 43% and 26%, respectively. These bio-based plastics have exhibited good thermal and mechanical properties with high biodegradability that makes them a suitable alternative for the existing conventional plastics.


2016 ◽  
Vol 81 ◽  
pp. 129-137 ◽  
Author(s):  
Luong Nguyen Dang ◽  
Sinh Le Hoang ◽  
Minna Malin ◽  
Jürgen Weisser ◽  
Torsten Walter ◽  
...  

2011 ◽  
Vol 415-417 ◽  
pp. 1196-1199 ◽  
Author(s):  
Heun Hyo Noh ◽  
Jong Keun Lee ◽  
Xing Liu ◽  
Yong Man Choi

Polyurethane dispersion modified with polymethylsiloxane (Si-PUD) and its nanocomposites incorporated with clays (Cloisite 15A and 30B at 3 and 6 wt%) were synthesized and characterized in this work. FTIR analysis showed that Si-PUD and Si-PUD/clay nanocomposites were successfully manufactured. While the glass transition temperature was not affected by the modification of the siloxane and clays, thermal resistance from TGA and mechanical properties such as tensile strength and elongation at break from UTM were largely enhanced at 3 wt% of both C15A and C30B clay. Higher content of 6 wt% of C30B has inferior to other Si-PUD samples containing clay in mechanical properties. Surface with higher hydrophobicity was observed for Si-PUD and Si-PUD/clay nanocomposites compared to PUD.


2018 ◽  
Vol 156 ◽  
pp. 05010
Author(s):  
Asep Handaya Saputra ◽  
Farhan Fathurrahman

Epoxy has many advantages over other resin. However, in certain usage, additive is needed to raise the thermal resistance of the composites, while lowering its negative effect on health and environment. One of the most common additives used for thermal resistance is halogen. Halogen gives negative effect on health and environment because of the release of toxic gas following its combustion. An alternative for halogen substitution is using Al(OH)3/Mg(OH)2. Therefore, in this research, the synthesis and characterization of non-halogenic fire retardant composite with epoxy resin and various concentration of additive Al(OH)3/Mg(OH)2 was conducted. The characterization of this research is the fire retardancy, morphology dispersion, and mechanical properties of the synthesized composite, such as tensile strength and hardness. The result of this research is that epoxy resin 50% with 50% of additive Al(OH)3 gives the best flame retardancy behavior and mechanical properties. This composite gives flammability rating V-0 with Tmax 364,3 °C, MLR 12,51 %/menit, total mass loss 57,26%, tensile strength 11,7 MPa, and hardness 79.


Author(s):  
F. H. Jamaludin ◽  
K. Rangasamy ◽  
T. W. Wong ◽  
T. Li ◽  
S. I. A. Razak

A series of bio-based photocrosslinked polyester membranes, poly(1,8-octanediol-itaconate-citrate-dodecandioate), (POSCI) were synthesized through polycondensation followed by photocrosslinking under UV irradiation in the presence of 2,2-dimethoxy-2-phenylacetophenone (DMPA) as photoinitiator (PI). Upon varied UV exposure time and DMPA content, the corresponding changes in chemical, structural, and mechanical properties of the polymer were studied. The transmission peak of FTIR spectrum centred at 1725 cm-1 indicates the formation of ester structure. Contact angle results suggested all of the synthesized POSCI membranes had hydrophilic properties as their contact angle is less than 90 °.  Sol-gel analysis shows that the swelling ratio of POSCI decreases while the gel fraction increases with increasing in photocrosslinking time. The tensile strength of POSCI, thus, increased correspondingly with longer UV exposure. Excess DMPA, however, proved otherwise.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4585 ◽  
Author(s):  
S.M.S. Abdel-Hamid ◽  
O.A. Al-Qabandi ◽  
Elminshawy. N.A.S. ◽  
M. Bassyouni ◽  
M.S. Zoromba ◽  
...  

In this study, microcellular polyurethane (PU)-natural fiber (NF) biocomposites were fabricated. Polyurethanes based on castor oil and PMDI were synthesized with varying volume ratios of sisal fiber. The effect of natural fiber treatment using water and alkaline solution (1.5% NaOH) and load effect were investigated. Biocomposites were mechanically and physically investigated using tensile, viscoelasticity, and water absorption tests. The interfacial adhesion between PU and sisal fiber was studied using SEM. Short NF loads (3%) showed a significant improvement in the mechanical properties of the PU-sisal composite such as modulus of elasticity, yield and tensile strength up to 133%, 14.35 % and 36.7% respectively. Viscoelastic measurements showed that the composites exhibit an elastic trend as the real compliance (J’) values were higher than those of the imaginary compliance (J’’). Increasing NF loads resulted in a decrease of J’. Applying variable temperatures (120–80 °C) caused an increase in the stiffness at different frequencies.


Sign in / Sign up

Export Citation Format

Share Document