scholarly journals Fabrication and Characterization of Microcellular Polyurethane Sisal Biocomposites

Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4585 ◽  
Author(s):  
S.M.S. Abdel-Hamid ◽  
O.A. Al-Qabandi ◽  
Elminshawy. N.A.S. ◽  
M. Bassyouni ◽  
M.S. Zoromba ◽  
...  

In this study, microcellular polyurethane (PU)-natural fiber (NF) biocomposites were fabricated. Polyurethanes based on castor oil and PMDI were synthesized with varying volume ratios of sisal fiber. The effect of natural fiber treatment using water and alkaline solution (1.5% NaOH) and load effect were investigated. Biocomposites were mechanically and physically investigated using tensile, viscoelasticity, and water absorption tests. The interfacial adhesion between PU and sisal fiber was studied using SEM. Short NF loads (3%) showed a significant improvement in the mechanical properties of the PU-sisal composite such as modulus of elasticity, yield and tensile strength up to 133%, 14.35 % and 36.7% respectively. Viscoelastic measurements showed that the composites exhibit an elastic trend as the real compliance (J’) values were higher than those of the imaginary compliance (J’’). Increasing NF loads resulted in a decrease of J’. Applying variable temperatures (120–80 °C) caused an increase in the stiffness at different frequencies.

2015 ◽  
Vol 1105 ◽  
pp. 51-55 ◽  
Author(s):  
K.M. Gupta ◽  
Kishor Kalauni

Bhimal fibres are quite a newer kind of bio-degradable fibres. They have never been heard before in literatures from the view point of their utility as engineering material. These fibres have been utilized for investigation of their properties. Characterization of this fibre is essential to determine its properties for further use as reinforcing fibre in polymeric, bio-degradable and other kinds of matrix. With this objective, the fabrication method and other mechanical properties of Bhimal-reinforced-PVA biocomposite have been discussed. The stress-strain curves and load-deflection characteristics are obtained. The tensile, compressive, flexure and impact strengths have been calculated. The results are shown in tables and graphs. The results obtained are compared with other existing natural fibre biocomposites. From the observations, it has been concluded that the tensile strength of Bhimal-reinforced-PVA biocomposite is higher than other natural fibre composites. Hence these can be used as reinforcement to produce much lighter weight biocomposites.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2276
Author(s):  
Rozyanty Rahman ◽  
Syed Zhafer Firdaus Syed Putra ◽  
Shayfull Zamree Abd Rahim ◽  
Irwana Nainggolan ◽  
Bartłomiej Jeż ◽  
...  

The demand for natural fiber hybrid composites for various applications has increased, which is leading to more research being conducted on natural fiber hybrid composites due to their promising mechanical properties. However, the incompatibility of natural fiber with polymer matrix limits the performance of the natural fiber hybrid composite. In this research work, the mechanical properties and fiber-to-matrix interfacial adhesion were investigated. The efficiency of methyl methacrylate (MMA)-esterification treatments on composites’ final product performance was determined. The composite was prepared using the hand lay-up method with varying kenaf bast fiber (KBF) contents of 10, 15, 20, 25, 30, 35 (weight%) and hybridized with glass fiber (GF) at 5 and 10 (weight%). Unsaturated polyester (UPE) resin and methyl ethyl ketone peroxide (MEKP) were used as binders and catalysts, respectively. Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) were used to examine the effects of MMA-esterification treatment on tensile strength and morphology (tensile fracture and characterization of MMA-esterification treatment) of the composite fabricated. The tensile strength of MMA-treated reinforced UPE and hybrid composites are higher than that of untreated composites. As for MMA treatment, 90 min of treatment showed the highest weight percent gain (WPG) and tensile strength of KBF-reinforced UPE composites. It can be concluded that the esterification of MMA on the KBF can lead to better mechanical properties and adhesion between the KFB and the UPE matrix. This research provides a clear reference for developing hybrid natural fibers, thus contributing to the current field of knowledge related to GF composites, specifically in transportation diligences due to their properties of being lightweight, superior, and involving low production cost.


2010 ◽  
Vol 123-125 ◽  
pp. 391-394 ◽  
Author(s):  
T.M. Mruthyunjaya Swamy ◽  
Manjula Koregala Sidde Gowda ◽  
Siddaramaiah ◽  
Joong Hee Lee

Composites of silk fibre reinforced chain extended polyurethane (CEPU) was synthesized by the reaction of castor oil with different diisocyanates and glutaric acid as chain extender. The effect of incorporation of silk fibre into neat CEPU on the physico- mechanical properties and thermal behaviours (TGA and DMA) has been investigated. The incorporation of silk fibre into CEPUs resulted in an enhancement of tensile strength and Tg. The effects of biological fluids and salt solution on swelling behavior of CEPU biocomposites were reported. Key words: Castor oil, silk fibre, composites, polyurethane, DMA, TGA.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 729
Author(s):  
Zhaozhe Yang ◽  
Xinhao Feng ◽  
Min Xu ◽  
Denis Rodrigue

To improve the interfacial adhesion and dispersion of a poplar fiber in a polylactic acid (PLA) matrix, maleic anhydride (MA) and a silane coupling agent (KH550) were used to modify the poplar fiber. The poplar fiber/PLA composites were produced with different modifier contents. The mechanical, thermal, rheological, and physical properties of composites were investigated. A comparison of different natural fiber modifications on the properties of composites was also analyzed. The results showed that both MA and KH550 could improve the interfacial adhesion between the poplar fiber and PLA, resulting in the enhanced mechanical properties of the composite, with 17% and 23% increases of tensile strength for 0.5% MA and 2% KH550, respectively. The thermal properties of the composites were improved at 6% KH550 (a 9% enhancement of T90%) and decreased at 0.5% MA (a 6% decrement of T90%). The wettability of the composites obtained a 11.3% improvement at 4% KH550 and a 5% reduction at 4% MA. Therefore, factors such as mechanical properties, economic efficiency, and durability should be carefully considered when choosing the modifier to improve the property of the composite.


2011 ◽  
Vol 410 ◽  
pp. 63-66 ◽  
Author(s):  
Wittawat Wongsorat ◽  
Nitinat Suppakarn ◽  
Kasama Jarukumjorn

Sisal fiber/natural rubber (NR) composites were prepared by the incorporation of sisal fiber into NR at contents of 10-30 phr. Fiber treatment (alkalization) and adding maleic anhydride grafted natural rubber (NR-g-MA) were used to improve interfacial adhesion between sisal fiber and NR matrix. Mechanical properties, morphologies, and cure characteristics of the composites were studied. With increasing fiber content, modulus at 100% strain (M100), modulus at 300% strain (M300), and hardness of the composites increased whereas tensile strength and elongation at break decreased. Cure time of the composites decreased with increasing fiber content but scorch time was not much affected by fiber content. Alkali treated sisal fiber/NR composite exhibited higher tensile properties and hardness than untreated sisal fiber/NR composite at all fiber content due to the improved adhesion between fiber and NR matrix through the mechanical interlocking mechanism. Alkalization showed no effect on scorch time and cure time of the composites. The addition of NR-g-MA into the composites increased M100, M300, tensile strength, and hardness but prolonged scorch time and cure time. NR-g-MA provided more effective improvement of the mechanical properties of the composites when compared to fiber alkalization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taslima Ahmed Tamanna ◽  
Shah Alimuzzaman Belal ◽  
Mohammad Abul Hasan Shibly ◽  
Ayub Nabi Khan

AbstractThis study deals with the determination of new natural fibers extracted from the Corypha taliera fruit (CTF) and its characteristics were reported for the potential alternative of harmful synthetic fiber. The physical, chemical, mechanical, thermal, and morphological characteristics were investigated for CTF fibers. X-ray diffraction and chemical composition characterization ensured a higher amount of cellulose (55.1 wt%) content and crystallinity (62.5%) in the CTF fiber. The FTIR analysis ensured the different functional groups of cellulose, hemicellulose, and lignin present in the fiber. The Scherrer’s equation was used to determine crystallite size 1.45 nm. The mean diameter, specific density, and linear density of the CTF fiber were found (average) 131 μm, 0.86 g/cc, and 43 Tex, respectively. The maximum tensile strength was obtained 53.55 MPa for GL 20 mm and Young’s modulus 572.21 MPa for GL 30 mm. The required energy at break was recorded during the tensile strength experiment from the tensile strength tester and the average values for GL 20 mm and GL 30 mm are 0.05381 J and 0.08968 J, respectively. The thermal analysis ensured the thermal sustainability of CTF fiber up to 230 °C. Entirely the aforementioned outcomes ensured that the new CTF fiber is the expected reinforcement to the fiber-reinforced composite materials.


2012 ◽  
Vol 3 (1) ◽  
pp. 13-26
Author(s):  
Myrtha Karina ◽  
Lucia Indrarti ◽  
Rike Yudianti ◽  
Indriyati

The effect of castor oil on the physical and mechanical properties of bacterial cellulose is described. Bacterial cellulose (BC) was impregnated with 0.5–2% (w/v) castor oil (CO) in acetone–water, providing BCCO films. Scanning electron micrographs revealed that the castor oil penetrated the pores of the bacterial cellulose, resulting in a smoother morphology and enhanced hydrophilicity. Castor oil caused a slight change in crystallinity indices and resulted in reduced tensile strength and Young's modulus but increased elongation at break. A significant reduction in tensile strength and Young's modulus was achieved in BCCO films with 2% castor oil, and there was an improvement in elongation at break and hydrophilicity. Impregnation with castor oil, a biodegradable and safe plasticiser, resulted in less rigid and more ductile composites.


Vacuum ◽  
2016 ◽  
Vol 128 ◽  
pp. 230-233 ◽  
Author(s):  
Wei Li ◽  
Jia Meng ◽  
Ping Liu ◽  
Haoming Du ◽  
Ke Zhang ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yongfang Qian ◽  
Zhen Zhang ◽  
Laijiu Zheng ◽  
Ruoyuan Song ◽  
Yuping Zhao

Design and fabrication of nanofibrous scaffolds should mimic the native extracellular matrix. This study is aimed at investigating electrospinning of polycaprolactone (PCL) blended with chitosan-gelatin complex. The morphologies were observed from scanning electron microscope. As-spun blended mats had thinner fibers than pure PCL. X-ray diffraction was used to analyze the degree of crystallinity. The intensity at two peaks at 2θof 21° and 23.5° gradually decreased with the percentage of chitosan-gelatin complex increasing. Moreover, incorporation of the complex could obviously improve the hydrophilicity of as-spun blended mats. Mechanical properties of as-spun nanofibrous mats were also tested. The elongation at break of fibrous mats increased with the PCL content increasing and the ultimate tensile strength varied with different weight ratios. The as-spun mats had higher tensile strength when the weight ratio of PCL to CS-Gel was 75/25 compared to pure PCL. Both as-spun PCL scaffolds and PCL/CS-Gel scaffolds supported the proliferation of porcine iliac endothelial cells, and PCL/CS-Gel had better cell viability than pure PCL. Therefore, electrospun PCL/Chitosan-gelatin nanofibrous mats with weight ratio of 75/25 have better hydrophilicity mechanical properties, and cell proliferation and thus would be a promising candidate for tissue engineering scaffolds.


Sign in / Sign up

Export Citation Format

Share Document