Fault Diagnosis of Nuclear Power Equipment Based on HMM-SVM and Database Development

2010 ◽  
Vol 139-141 ◽  
pp. 2532-2536 ◽  
Author(s):  
Hou Yao Zhu ◽  
Chun Liang Zhang ◽  
Xia Yue

This paper mainly introduced the basic theory of Hidden Markov Model (HMM) and Support Vector Machines (SVM). HMM has strong capability of handling dynamic process of time series and the timing pattern classification, particularly for the analysis of non-stationary, poor reproducibility signals. It has good ability to learn and re-learn and high adaptability. SVM has strong generalization ability of small samples, which is suitable for handling classification problems, to a greater extent, reflecting the differences between categories. Based on the advantages and disadvantages between the two models, this paper presented a hybrid model of HMM-SVM. Experiments showed that the HMM-SVM model was more effective and more accurate than the two single separate models. The paper also explored the application of its database system development, which could help the managers to get and handle the data quickly and effectively.

2010 ◽  
Vol 97-101 ◽  
pp. 3233-3238
Author(s):  
Chun Liang Zhang ◽  
Sheng Li ◽  
Xia Yue

The centrifugal pump of pressurized water reactor (PWR) in nuclear power plant is characterized by its complicated system, small accumulated data and fault samples. HMM has a strong ability to deal with time series modeling for dynamic process, while SVM has excellent generalization ability to solve the learning problems with small samples. This paper develops a state monitoring system based on the hybrid HMM/SVM model. The wavelet analysis techniques are used to extract features and the Hidden Markov Model (HMM) and Support Vector Machine (SVM) are used as the basic modeling and identification tools. The identification results of centrifugal pump show that the hybrid HMM/SVM system is effective and available for the state monitoring of the centrifugal pump of PWR in nuclear power plan.


2021 ◽  
Vol 13 (18) ◽  
pp. 3573
Author(s):  
Chunfang Kong ◽  
Yiping Tian ◽  
Xiaogang Ma ◽  
Zhengping Weng ◽  
Zhiting Zhang ◽  
...  

Regarding the ever increasing and frequent occurrence of serious landslide disaster in eastern Guangxi, the current study was implemented to adopt support vector machines (SVM), particle swarm optimization support vector machines (PSO-SVM), random forest (RF), and particle swarm optimization random forest (PSO-RF) methods to assess landslide susceptibility in Zhaoping County. To this end, 10 landslide disaster-related variables including digital elevation model (DEM)-derived, meteorology-derived, Landsat8-derived, geology-derived, and human activities factors were provided. Of 345 landslide disaster locations found, 70% were used to train the models, and the rest of them were performed for model verification. The aforementioned four models were run, and landslide susceptibility evaluation maps were produced. Then, receiver operating characteristics (ROC) curves, statistical analysis, and field investigation were performed to test and verify the efficiency of these models. Analysis and comparison of the results denoted that all four landslide models performed well for the landslide susceptibility evaluation as indicated by the area under curve (AUC) values of ROC curves from 0.863 to 0.934. Among them, it has been shown that the PSO-RF model has the highest accuracy in comparison to other landslide models, followed by the PSO-SVM model, the RF model, and the SVM model. Moreover, the results also showed that the PSO algorithm has a good effect on SVM and RF models. Furthermore, the landslide models devolved in the present study are promising methods that could be transferred to other regions for landslide susceptibility evaluation. In addition, the evaluation results can provide suggestions for disaster reduction and prevention in Zhaoping County of eastern Guangxi.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 191
Author(s):  
Daniel R. Prado ◽  
Jesús A. López-Fernández ◽  
Manuel Arrebola

In this work, a simple, efficient and accurate database in the form of a lookup table to use in reflectarray design and direct layout optimization is presented. The database uses N-linear interpolation internally to estimate the reflection coefficients at coordinates that are not stored within it. The speed and accuracy of this approach were measured against the use of the full-wave technique based on local periodicity to populate the database. In addition, it was also compared with a machine learning technique, namely, support vector machines applied to regression in the same conditions, to elucidate the advantages and disadvantages of each one of these techniques. The results obtained from the application to the layout design, analysis and crosspolar optimization of a very large reflectarray for space applications show that, despite using a simple N-linear interpolation, the database offers sufficient accuracy, while considerably accelerating the overall design process as long as it is conveniently populated.


2013 ◽  
Vol 67 (5) ◽  
pp. 1121-1128 ◽  
Author(s):  
Mohammad Najafzadeh ◽  
Gholam-Abbas Barani ◽  
Masoud Reza Hessami Kermani

In the present study, the Group Method of Data Handling (GMDH) network has been utilized to predict abutments scour depth for both clear-water and live-bed conditions. The GMDH network was developed using a Back Propagation algorithm (BP). Input parameters that were considered as effective variables on abutment scour depth included properties of sediment size, geometry of bridge abutments, and properties of approaching flow. Training and testing performances of the GMDH network were carried out using dimensionless parameters that were collected from the literature. The testing results were compared with those obtained using the Support Vector Machines (SVM) model and the traditional equations. The GMDH network predicted the abutment scour depth with lower error (RMSE (root mean square error) = 0.29 and MAPE (mean absolute percentage of error) = 0.99) and higher (R = 0.98) accuracy than those performed using the SVM model and the traditional equations.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Yudong Li ◽  
Zhongke Feng ◽  
Shilin Chen ◽  
Ziyu Zhao ◽  
Fengge Wang

The study of forest fire prediction is of great environmental and scientific significance. China’s Guangxi Autonomous Region has a high incidence rate of forest fires. At present, there is little research on forest fires in this area. The application of the artificial neural network and support vector machines (SVM) in forest fire prediction in this area can provide data for forest fire prevention and control in Guangxi. In this paper, based on Guangxi’s 2010–2018 satellite monitoring hotspot data, meteorology, terrain, vegetation, infrastructure, and socioeconomic data, the researchers determined the main forest fire driving factors in Guangxi. They used feature selection and backpropagation neural networks and radial basis SVM to build forest fire prediction models. Finally, the researchers use the accuracy, precision, and area under the characteristic curve (ROC-AUC) and other indicators to evaluate the predictive performance of the two models. The results showed that the prediction accuracy of the BP neural network and SVM is 92.16% and 89.89%, respectively. As both results are over 85%, the requirements of prediction accuracy is met. These results can be used for forest fire prediction in the Guangxi Autonomous Region. Specifically, the accuracy of the BP neural network was 0.93, which was higher than that of the SVM model (0.89); the recall of the SVM model was 0.84, which was lower than the BANN model (0.92), and the AUC value of the SVM model was 0.95, which was lower than the BP neural network model. The obtained results confirm that the BP neural network model can provide more prediction accuracy than support vector machines and is therefore more suitable for forest fire prediction in Guangxi, China. This research provides the necessary theoretical basis and data support for application in the field of forestry of the Guangxi Autonomous Region, China.


Stats ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 89-103 ◽  
Author(s):  
Hossein Hassani ◽  
Emmanuel Silva ◽  
Marine Combe ◽  
Demetra Andreou ◽  
Mansi Ghodsi ◽  
...  

Disease emergence, in the last decades, has had increasingly disproportionate impacts on aquatic freshwater biodiversity. Here, we developed a new model based on Support Vector Machines (SVM) for predicting the risk of freshwater fish disease emergence in England. Following a rigorous training process and simulations, the proposed SVM model was validated and reported high accuracy rates for predicting the risk of freshwater fish disease emergence in England. Our findings suggest that the disease monitoring strategy employed in England could be successful at preventing disease emergence in certain parts of England, as areas in which there were high fish introductions were not correlated with high disease emergence (which was to be expected from the literature). We further tested our model’s predictions with actual disease emergence data using Chi-Square tests and test of Mutual Information. The results identified areas that require further attention and resource allocation to curb future freshwater disease emergence successfully.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Hao Jiang ◽  
Wai-Ki Ching

High dimensional bioinformatics data sets provide an excellent and challenging research problem in machine learning area. In particular, DNA microarrays generated gene expression data are of high dimension with significant level of noise. Supervised kernel learning with an SVM classifier was successfully applied in biomedical diagnosis such as discriminating different kinds of tumor tissues. Correlation Kernel has been recently applied to classification problems with Support Vector Machines (SVMs). In this paper, we develop a novel and parsimonious positive semidefinite kernel. The proposed kernel is shown experimentally to have better performance when compared to the usual correlation kernel. In addition, we propose a new kernel based on the correlation matrix incorporating techniques dealing with indefinite kernel. The resulting kernel is shown to be positive semidefinite and it exhibits superior performance to the two kernels mentioned above. We then apply the proposed method to some cancer data in discriminating different tumor tissues, providing information for diagnosis of diseases. Numerical experiments indicate that our method outperforms the existing methods such as the decision tree method and KNN method.


Sign in / Sign up

Export Citation Format

Share Document