Machinability Investigation in High Speed Turning of Powder Metallurgy Nickel-Based Superalloy with Sialon Ceramic Inserts

2010 ◽  
Vol 139-141 ◽  
pp. 805-808 ◽  
Author(s):  
Yang Qiao ◽  
Xing Ai ◽  
Zhan Qiang Liu ◽  
Jun Zhao

An experimental investigation was carried out to understand the behavior of a powder metallurgy nickel-based superalloy when machined with sialon ceramic insert tools. Turning experiments were carried out at different cutting speeds and feed rates while depth of cut was kept constant. Cutting tool performance was evaluated with respect to temperature and cutting forces generated during turning, and tool wear. The sialon ceramic cutting tool showed high performance when increasing cutting speed, the machining experiments showed that sialon ceramic tools performed better at cutting speed up to 80 m/min. Abrasion and adhesion was the dominant wear mechanisms. Chipping on the tool rake and flank faces, as well as catastrophic failure under thermal shock and mechanical loading, was also observed in experiments. As cutting temperature was very high when turning powder metallurgy nickel-based superalloy, good high-temperature strength and thermal shock resistance were indispensable to the cutting tools for machinging this kind of material.

2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


Author(s):  
O Kalantari ◽  
MM Fallah ◽  
F Jafarian ◽  
SR Hamzeloo

In laser-assisted machining (LAM), the laser source is focused on the workpiece as a thermal source and locally increases the workpiece temperature and makes the material soft ahead of the cutting tool so using this method, the machining forces are reduced, which causes improving the surface quality and cutting tool life. Machinability of advanced hard materials is significantly low and conventional methods do not work effectively. Therefore, utilizing an advanced method is inevitable. The product life and performance of complex parts of the leading industry depends on surface integrity. In this work, the surface integrity features including microhardness, grain size and surface roughness (Ra) and also the maximum cutting temperature were investigated experimentally in LAM of Ti-6Al-4V. According to the results, cutting speed has inverse effect on the effectiveness of LAM process because with increasing speed (15 to 63 m/min), temperature decreases (524 °C to 359 °C) and surface roughness increases (0.57 to 0.71 μm). Enhancing depth of cut and feed has direct effect on the process temperature, grain size, microhardness and surface roughness.


2009 ◽  
Vol 407-408 ◽  
pp. 608-611 ◽  
Author(s):  
Chang Yi Liu ◽  
Cheng Long Chu ◽  
Wen Hui Zhou ◽  
Jun Jie Yi

Taguchi design methodology is applied to experiments of flank mill machining parameters of titanium alloy TC11 (Ti6.5A13.5Mo2Zr0.35Si) in conventional and high speed regimes. This study includes three factors, cutting speed, feed rate and depth of cut, about two types of tools. Experimental runs are conducted using an orthogonal array of L9(33), with measurement of cutting force, cutting temperature and surface roughness. The analysis of result shows that the factors combination for good surface roughness, low cutting temperature and low resultant cutting force are high cutting speed, low feed rate and low depth of cut.


2016 ◽  
Vol 16 ◽  
pp. 7-15 ◽  
Author(s):  
Nirmal Kumar Mandal ◽  
Tanmoy Roy

Abstract. Kinetic energy of a machining process is converted into heat energy. The generated heat at cutting tool and work piece interface has substantial impact on cutting tool life and quality of the work piece. On the other hand, development of advanced cutting tool materials, coatings and designs, along with a variety of strategies for lubrication, cooling and chip removal, make it possible to achieve the same or better surface quality with dry or Minimum Quantity Lubrication (MQL) machining than traditional wet machining. In addition, dry and MQL machining is more economical and environment friendly. In this work, 20 no. of experiments were carried out under dry machining conditions with different combinations of cutting speed, feed rate and depth of cut and corresponding cutting temperature and surface roughness are measured. The no. of experiments is determined through Design of Experiments (DOE). Nonlinear regression methodology is used to model the process using Response Surface Methodology (RSM). Multi-objective optimization is carried using Genetic Algorithm which ensures high productivity with good product quality.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5677
Author(s):  
Elshaimaa Abdelnasser ◽  
Azza Barakat ◽  
Samar Elsanabary ◽  
Ahmed Nassef ◽  
Ahmed Elkaseer

This article presents the results of an experimental investigation into the machinability of Ti6Al4V alloy during hard turning, including both conventional and high-speed machining, using polycrystalline diamond (PCD) inserts. A central composite design of experiment procedure was followed to examine the effects of variable process parameters; feed rate, cutting speed and depth of cut (each at five levels) and their interaction effects on surface roughness and cutting temperature as process responses. The results revealed that cutting temperature increased with increasing cutting speed and decreasing feed rate in both conventional and high-speed machining. It was found that high-speed machining showed an average increase in cutting temperature of 65% compared with conventional machining. Nevertheless, high-speed machining showed better performance in terms of lower surface roughness despite using higher feed rates compared to conventional machining. High-speed machining of Ti6Al4V showed an improvement in surface roughness of 11% compared with conventional machining, with a 207% increase in metal removal rate (MRR) which offered the opportunity to increase productivity. Finally, an inverse relationship was verified between generated cutting temperature and surface roughness. This was attributed mainly to the high cutting temperature generated, softening, and decreasing strength of the material in the vicinity of the cutting zone which in turn enabled smoother machining and reduced surface roughness.


2013 ◽  
Vol 395-396 ◽  
pp. 1031-1034
Author(s):  
Can Zhao ◽  
Yu Bo Liu

This paper makes an experiment in high-speed milling of Inconel 718. Cutting tests were performed using round and ceramic tools, at feeds from 0.06 to 0.14 mm/tooth, Axial Depth of Cut from0.5 to 1.5mm,and cutting speeds ranging from 500 to 1037 m/min. The behaviour of the cutting forces during machining was then measure. The results show that cutting force increases first and then decreases with the increase of feed per tooth, the tool chipping and groove wear were found with the increase of axial cutting depth, and cutting force is increased; the increase in cutting force with the cutting speed increases, when the cutting speed reaches a critical speed, the cutting force as the cutting speed increases began to decline.


2015 ◽  
Vol 1115 ◽  
pp. 47-50 ◽  
Author(s):  
Muhammad Riza ◽  
Erry Yulian Triblas Adesta ◽  
M. Yuhan Suprianto

Cutting temperature generated during high speed machining operations has been recognized as major factors influence tool performance and workpiece geometry. This paper aims to model the cutting temperature and to investigate cutting temperature behaviours when contour-in tool path strategy applied in high speed end milling process. The experiments were carried out on CNC vertical machining center by involving PVD coated carbide inserts. Cutting speed, feed rate and depth of cut were set to vary. Results obtained indicate that cutting temperature is high in the initial stage of milling and at the corners region or turning points region. Portion of radial width of cut with workpiece in combination with the abrupt change of the milling path direction occur particularly in acute internal corners of a pocket leads to rise of cutting temperature.


Author(s):  
Krishnaraj Vijayan ◽  
Samsudeen Sadham ◽  
Saikumar Sangeetha ◽  
Kuppan Palaniyandi ◽  
Redouane Zitoune

This paper investigates numerical and experimental study of end milling of titanium alloy Ti–6% Al–4% V using carbide insert based cutting tool. The experiments were carried out under dry cutting conditions. The cutting speeds selected for the experiments are 20,30,40,50 mmin–1. The feed rates used in the experiment were 0.02, 0.04, 0.06 and 0.08 mmrev–1, while depth of cut is kept constant at 1.0 mm. For conducting the experiments single insert based cutting tool is based. For a range of cutting speeds and feeds measurements of cutting force, surface roughness and cutting temperature have been recorded. From the experimental study it can be seen that cutting speed has the significant effect on temperature when compared to feed/tooth. Further it is also found that cutting speed of 30 m min−1 and feed rate of 0.02 mm rev−1 could be used for machining Ti alloy. Moreover the experimental and numerical cutting force values are compared.


2011 ◽  
Vol 464 ◽  
pp. 556-559 ◽  
Author(s):  
Yang Qiao ◽  
Xing Ai ◽  
Zhan Qiang Liu

The present paper is an experimental investigation on the machinability of powder metallurgy (PM) nickel-based superalloy during drilling using high-speed steel (M42) drills. The effect of machining parameters on the cutting force, cutting temperature and tool wear were investigated during the experimentation. The effect of machining parameters on the tool wear was examined through SEM micrographs. The research work findings will also provide useful economic machining solution by utilizing economical high-speed steel drills during drilling processing of powder metallurgy nickel-based superalloy, which is otherwise usually machined by costly coated carbide tools or CBN tools. The present approach and results will be helpful for understanding the machinability of powder metallurgy nickel-based superalloy during drilling for the manufacturing engineers.


2011 ◽  
Vol 188 ◽  
pp. 55-60
Author(s):  
J. Du ◽  
Zhan Qiang Liu

FGH95 is one kind of high-strength, thermal-resistant nickel-based superalloys fabricated by powder metallurgy (PM). It plays an increasingly important role in the development and manufacture of turbine discs. Due to the extreme toughness and work hardening characteristics of this kind of superalloy, the problem of machining FGH95 is one of ever-increasing magnitudes. This paper investigates the influence of cutting parameters on the cutting force, cutting temperature and tool wear during the end milling of PM nickel-based superalloy FGH95. The empirical formula for cutting force and cutting temperature of FGH95 are given out. Experimental results show that the cutting speed among milling parameters has the greatest influence on cutting forces and cutting temperatures. It is shown that the major tool wear mechanisms are combination interactions of abrasive wear, adhesion wear, micro-breakout and chipping.


Sign in / Sign up

Export Citation Format

Share Document