Effect of Nozzle Layout Parameters on the Controlled Cooling of Flat Steel

2010 ◽  
Vol 145 ◽  
pp. 326-331 ◽  
Author(s):  
Shao Jun Zhang ◽  
Dong Mei Zhu ◽  
Guo Yong Liu

The three dimensional unsteady cooling process of flat steel is simulated by the numerical simulation calculation method of Finite Element Coupling Field. Then, the influential rules, which about layout parameters of the controlled cooling nozzle such as the distance and number of nozzle rows on the cooling effect, are analyzed separately. The results show that the distance of nozzle has a little effect on cooling rate. Relatively the number of nozzle rows affects cooling rate of flat steel greatly. Different layout parameters of the controlled cooling nozzle will be used by considering different factors. The numerical simulation results provide references for the layout of steel nozzle and controlled cooling device.

2013 ◽  
Vol 712-715 ◽  
pp. 1634-1637
Author(s):  
Jian Liu ◽  
Fu Zeng Hou ◽  
Xiao Guang Yu

In order to improve the comprehensive mechanical properties of the steel, the heat treatment software COSMAP is used to simulate the rolling and controlled cooling of I-beam. The numerical simulation shows that: when the cooling rate is controlled at 10 °C/s around, the mechanical properties of controlled cooling can be obviously improved. The strength and hardness can be improved on the condition of ductility and toughness ensured, while the amount of residual austenite can be reduced significantly, which provide a theoretical basis for further optimization of the heat treatment process.


2011 ◽  
Vol 52-54 ◽  
pp. 1464-1469
Author(s):  
Shao Jun Zhang ◽  
Hua Zhang ◽  
Dong Mei Zhu ◽  
Guo Yong Liu

In this paper, the cooling process of Large-diameter bars is simulated by the 3D numerical simulation calculation method of Finite Element Coupling Field. Then, the influence, which about the controlled cooling inlet pattern on the cooling effect, has been analyzed. The results show that the bar cooling effect of annular nozzle inlet cooling pipe is the best among the several inlet patterns in this paper; relatively the bar cooling effect of four circular nozzles inlet cooling pipe is the worst among the several nozzles patterns in this paper. This numerical simulation result provides reference for choosing inlet pattern of bar controlled cooling equipment.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1156
Author(s):  
Wenjie Qi ◽  
Bowen Liu ◽  
Tian Liang ◽  
Jian Chen ◽  
Deyong Chen ◽  
...  

This paper presents a micro-electromechanical systems (MEMS)-based integrated triaxial electrochemical seismometer, which can detect three-dimensional vibration. By integrating three axes, the integrated triaxial electrochemical seismometer is characterized by small volume and high symmetry. The numerical simulation results inferred that the integrated triaxial electrochemical seismometer had excellent independence among three axes. Based on the experimental results, the integrated triaxial electrochemical seismometer had the advantage of small axial crosstalk and could detect vibration in arbitrary directions. Furthermore, compared with the uniaxial electrochemical seismometer, the integrated triaxial electrochemical seismometer had similar sensitivity curves ranging from 0.01 to 100 Hz. In terms of random ground motion response, high consistencies between the developed integrated triaxial electrochemical seismometer and the uniaxial electrochemical seismometer could be easily observed, which indicated that the developed integrated triaxial electrochemical seismometer produced comparable noise levels to those of the uniaxial electrochemical seismometer. These results validated the performance of the integrated triaxial electrochemical seismometer, which has a good prospect in the field of deep geophysical exploration and submarine seismic monitoring.


2014 ◽  
Vol 989-994 ◽  
pp. 982-985
Author(s):  
Jun Chen ◽  
Xiao Jun Ye

ANSYS-LS/DYNA 3D finite element software projectile penetrating concrete target three-dimensional numerical simulation , has been the target characteristics and destroy ballistic missile trajectory , velocity and acceleration and analyze penetration and the time between relationship , compared with the test results , the phenomenon is consistent with the simulation results. The results show that : the destruction process finite element software can better demonstrate concrete tests revealed the phenomenon can not be observed , estimated penetration depth and direction of the oblique penetration missile deflection .


2013 ◽  
Vol 310 ◽  
pp. 145-149 ◽  
Author(s):  
Jian Liu ◽  
Fu Zeng Hou ◽  
Xiao Guang Yu

In order to improve the comprehensive mechanical properties of the steel, the heat treatment software COSMAP is used to simulate the rolling and controlled cooling of H-beam. The numerical simulation shows that the mechanical properties of controlled cooling can be obviously improved, when the cooling rate is controlled at 10°C/s around. Strength and hardness can be improved under the condition of ductility and toughness ensured. Meanwhile the amount of residual austenite can be reduced significantly. It provides a theoretical basis for further optimization of the heat treatment process.


2019 ◽  
Vol 9 (5) ◽  
pp. 847
Author(s):  
Lide Wei ◽  
Changfu Wei ◽  
Sugang Sui

This paper suggests a large-scale three-dimensional numerical simulation method to investigate the fluorine pollution near a slag yard. The large-scale three-dimensional numerical simulation method included an experimental investigation, laboratory studies of solute transport during absorption of water by soil, and large-scale three-dimensional numerical simulations of solute transport. The experimental results showed that the concentrations of fluorine from smelting slag and construction waste soil were well over the discharge limit of 0.1 kg/m3 recommended by Chinese guidelines. The key parameters of the materials used for large-scale three-dimensional numerical simulations were determined based on an experimental investigation, laboratory studies, and soil saturation of survey results and back analyses. A large-scale three-dimensional numerical simulation of solute transport was performed, and its results were compared to the experiment results. The simulation results showed that the clay near the slag had a high saturation of approximately 0.9, consistent with the survey results. Comparison of the results showed that the results of the numerical simulation of solute transport and the test results were nearly identical, and that the numerical simulation results could be used as the basis for groundwater environmental evaluation.


2012 ◽  
Vol 588-589 ◽  
pp. 1355-1358
Author(s):  
Xiao Xing ◽  
Guo Ming Ye

During the splicing process of pneumatic splicer, the principle of yarn splicing is closely related to the flow field inside the splicing chamber. This paper presents a numerical simulation of the flow char-acteristics inside the splicing chamber of the pneumatic splicer. A three-dimensional grid and the realizable tur¬bulence model are used in this simulation. The numerical results of veloc¬ity vectors distribution inside the chamber are shown. Streamlines starting from the two air injectors are also acquired. Based on the simulation, the principle of yarn splicing of the pneumatic splicer is discussed. The airflow in the splicing chamber can be divided into three regions. In addition, the simulation results have well sup¬ported the principle of yarn splicing of pneumatic splicer claimed by the splicing chamber makers.


2014 ◽  
Vol 955-959 ◽  
pp. 3120-3124
Author(s):  
Kai Bian ◽  
Shi Lei Chen ◽  
Xue Yuan Li ◽  
Ying Wang Zhao

In order to figure out seepage field in aquifer under the coal seam, the geology and hydrogeology conditions systematically of study area were analyzed, hydrogeological conceptual model was generalized, mathematical model was built, seepage field of the Taiyuan limestone aquifer was simulated with software Feflow. Simulation results show that hydrogeological parameters of Taiyuan limestone aquifer change greatly in different partitions. The model also indicates the heterogeneity of karst fissure of Taiyuan limestone aquifer. The drainage quantity is from the Ordovician limestone aquifer besides supplying from runoff of upstream and capture excretion of downstream. The research is an attempt to simulate the seepage field in aquifer under coal seam, to some extent, it also provides a technical basis for safe coal mining and as a reference for simulation constructions of three-dimensional groundwater flow models in similar coal mines.


Author(s):  
Tiefei Li ◽  
Xueliang Chen ◽  
Zongchao Li

AbstractA three-dimensional multitransmitting formula is developed in ADINA to simulate the input of seismic waves and the scattering of infinite domains at the same time, consistent with the progress of the explicit finite element method of lumped mass. A three-dimensional cube model is built, and a delta pulse wave is input to compare the simulation results with the analytical solutions. The simulation results show that the peak error is 0.2% of the input wave, which meets the requirements of the usual numerical simulation. This method has a certain efficiency advantage in site effect analyses of fine models for localized fields. A velocity structure model of the Yuxi Basin is built, and the associated basin effect is studied by numerical simulation. The distribution of the focusing effect is related to the structure of the narrow east-west and wide north-south features in the Yuxi Basin, and the edge effect is related to the slope of the basin base. A distribution map is given of the amplification effect of ground motion in the basin.


2010 ◽  
Vol 29-32 ◽  
pp. 1878-1882 ◽  
Author(s):  
Jian Qiang Zhou ◽  
Fa Zhan Yang ◽  
De Sheng Li

To understand the thermal distribution in a complex structure and high quality linkage casting, a mathematical model of temperature and stress field was established. Numerical simulation techniques was applied by using Procast software in the temperature and stress fields of solidification process, and the foundry defect such as old lap, misrun, shrinkage and dispersed shrinkage was predicted. The stress distribution and deformation in cooling process of casting were analyzed. The simulation results can supply a scientific foundation for foundry technology.


Sign in / Sign up

Export Citation Format

Share Document