Effects of Repeated Plastic Working (RPW) Process on the Structure and Properties of Mg2Si/Mg-Zn-Er Composite

2010 ◽  
Vol 146-147 ◽  
pp. 1222-1226
Author(s):  
Shu Bo Li ◽  
Ya Ling Qin ◽  
Han Li ◽  
Wen Bo Du

The Mg matrix composite (Mg2Si/Mg-5Zn-2.5Er) was prepared using repeated plastic working (RPW) technique. and the effects of the number of RPW cycles on the microstructure and mechanical properties of these composites were investigated. The results indicated that the added silicon particles fully reacted with the magnesium matrix, and theMg2Si/Mg-5Zn-2.5Er composites were successfully achieved. When the number of RPW cycle increased, the size of the Mg2Si particles decreased, and the grain size of the matrix alloy reached the minimum when 200 RPW cycles was used. The best mechanical properties were also identified as 394 MPa ultimate strength, and 363 MPa yield strength, when 200 RPW cycles were used.

2013 ◽  
Vol 312 ◽  
pp. 315-318 ◽  
Author(s):  
C.F. Fang ◽  
L.G. Meng ◽  
N.N. Wu ◽  
X.G. Zhang

In-situ micro/nanosized TiB2 and Al2(Y, Gd) particles reinforced magnesium matrix composite was successfully fabricated by addition of Al-Ti-B preform into Mg-Gd-Y-Zn matrix alloy, its microstructures and properties were investigated. The results show that the introduction of Al-Ti-B preform causes the precipitation of Al2(Y, Gd) particles and the SHS synthesis of TiB2 particles which significantly refine solidification structure. The reinforced Al2(Y, Gd) particles with average sizes of 5-8 μm are uniformly distributed throughout the magnesium matrix, and have a good bond to the matrix. Tensile tests indicate that, compared with the former matrix alloy, mechanical properties of the multiple in-situ particles reinforced composite are improved all-roundly.


2011 ◽  
Vol 308-310 ◽  
pp. 142-145
Author(s):  
Yu Yong Chen ◽  
Zhao Xin Du ◽  
Fan Tao Kong ◽  
Shu Long Xiao ◽  
Zhen Xing Zhang

Effects of different Mo contents on microstructures and properties of Ti-22.5Al-20Nb-2V(at.%) were analyzed in this paper. Experimental results showed that the grain size was refined and the amounts of equiaxed α2 phases decreased with increase of Mo from 0.6at.% to 1.5at.%. The size of (O+B2) lath was refined when Mo from 0.6at.% to 1.2at.%. However, it seems that Mo easily segregate especially in grain boundary and become seriously with Mo increased. Compression tests showed that the yield strength and ultimate strength of alloys were obviously improved with Mo addition from 0.6at.% to 1.2at.%. Microhardness tests showed the same trend with compression yield and ultimate strength.


2010 ◽  
Vol 89-91 ◽  
pp. 692-696 ◽  
Author(s):  
Ji Ming Zhou ◽  
Le Hua Qi ◽  
Hai Bo Ouyang ◽  
He Jun Li

Magnesium matrix composites are attractive for weight critical application, such as automotive and aerospace components, because of its high specific strength and stiffness. Extrusion process directly following vacuum infiltration (EVI) can eliminate the porosity and obtain the well-aligned and uniform fiber distribution during the fabrication of Csf/AZ91D composite. This process combines the advantages of gas pressure infiltration, squeeze casting, and semi-solid extrusion. The mechanical properties of the magnesium are improved greatly by introducing the carbon fibers into the magnesium matrix through the EVI process. In the present study, the carbon short fiber reinforced magnesium matrix composites Csf/AZ91D were fabricated by EVI process. The microstructure and tensile property of Csf/AZ91D composites were investigated. The results showed that the microstructure of the composite presented a uniform distribution of carbon short fibers in the matrix and good interfacial integrity. The yield strength and stiffness of the composites increased with increasing carbon short fiber content, but at the cost of ductility. Nonetheless, Csf/AZ91D can keep relatively high ductility during the improvement of strength compared with reported composites in the literatures. Increasing carbon fiber content in the composite was not always beneficial to the ultimate tensile strength at the same magnitude. When the fiber content exceeds 10%, the matrix was not strengthened as greatly as under 10% fiber content. The yield strength improvement was attributed to (i) load-bearing effects due to the presence of carbon short fiber reinforcements; (ii) grain size refinement due to the large extrusion deformation; (iii) generation of dislocations to accommodate CTE mismatch between the matrix and the particles.


2011 ◽  
Vol 694 ◽  
pp. 635-639 ◽  
Author(s):  
Wei Xue Li ◽  
Yun Feng Nie ◽  
Dun Dong Wang

AZ91D alloy composites reinforced by CNTs/SiCp were fabricated using stir casting process. The mechanical properties of the composites were tested, observed and analyzed the microstructure, the fractographs were observed and analyzed via scanning electron microscope. The results showed that CNTs/SiCp could not only refine the grains of the composites, but also bear the load of resistance to deformation. Compared with the matrix alloy, the tensile strength, the elastic modulus, the micro-hardness and the elongation rate of the composites had been enhanced significantly. But the mechanical properties would be fell down with the more addition of CNTs/SiCp.


2016 ◽  
Vol 256 ◽  
pp. 181-185
Author(s):  
Zhao Hui Wang ◽  
Bo Li ◽  
Xian Du ◽  
Ke Liu ◽  
Shu Bo Li ◽  
...  

In this paper, In Situ AlN particles reinforced magnesium matrix composites were fabricated. The results show that the AlN phases can be In Situ synthesized in AZ91D alloy with the addition of Mg3N2. The microstructure and phases of the matrix alloys and the composites were investigated by OM, SEM and XRD. The hardness and mechanical properties of the matrix alloys and the composites were also obtained. Compared with those of the matrix alloy, the grains of composites were refined obviously and the mechanical properties of composites were improved significantly. The microstructural analysis indicates that the AlN particles can act as the heterogeneous nucleation of α-Mg phases in the composites. The strengthening mechanism of the composites with AlN particles was discussed.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1219
Author(s):  
Zhiyu Yang ◽  
Jianzhong Fan ◽  
Yanqiang Liu ◽  
Junhui Nie ◽  
Ziyue Yang ◽  
...  

The strengthening and weakening effects of SiC particles on composite strength and ductility were studied. Al-Cu-Mg alloys matrices with three different mechanical properties were used. Their yield strength, ultimate strength, and elongation range from 90 to 379 MPa, 131 to 561 MPa, and 18% to 31%, respectively. SiC particles with sizes of 4, 8, 12, 15, 20, and 30 μm were used to reinforce these three matrices, separately, and the composites of eighteen combinations of the particle sizes and matrix strengths were manufactured. Yield strength, ultimate strength, elongation, and fracture morphology of these composites were characterized. Based on the analysis, the strengthening to weakening behavior on strength and ductility were comprehensively discussed. The critical particle size having the best ductility was obtained. The strengthening limit and match range of the particle and the matrix to achieve effective strengthening were defined as a function of the particle size and matrix strength. This work offers an important reference for optimization of mechanical properties of the particle-reinforced metal matrix composites.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1815
Author(s):  
Feng Fang ◽  
Diwen Hou ◽  
Zhilei Wang ◽  
Shangfeng Che ◽  
Yuanxiang Zhang ◽  
...  

Based on conventional hot rolling processes and strip casting processes, Cu precipitation strengthening is used to improve the strength of non-oriented silicon steel in order to meet the requirements of high-speed driving motors of electric vehicles. Microstructure evolution was studied, and the effects of Cu precipitates on magnetic and mechanical properties are discussed. Compared with conventional processes, non-oriented silicon steel prepared by strip casting exhibited advantages with regard to microstructure optimization with coarse grain and {100} texture. Two-stage rolling processes were more beneficial for uniform microstructure, coarse grains and improved texture. The high magnetic induction B50 of 1.762 T and low core losses with P1.5/50, P1.0/400 and P1.0/1000 of 1.93, 11.63 and 44.87 W/kg, respectively, were obtained in 0.20 mm sheets in strip casting. Cu precipitates significantly improved yield strength over ~120 MPa without deteriorating magnetic properties both in conventional process and strip casting. In the peak stage aged at 550 °C for 120 min, Cu precipitates retained bcc structure and were coherent with the matrix, and the yield strength of the 0.20 mm sheet was as high as 501 MPa in strip casting. The main mechanism of precipitation strengthening was attributed to coherency strengthening and modulus strengthening. The results indicated that balanced magnetic and mechanical properties can be achieved in thin-gauge non-oriented silicon steel with Cu addition in strip casting.


2010 ◽  
Vol 667-669 ◽  
pp. 457-461
Author(s):  
Wei Guo ◽  
Qu Dong Wang ◽  
Man Ping Liu ◽  
Tao Peng ◽  
Xin Tao Liu ◽  
...  

Cyclic channel die compression (CCDC) of AZ31-1.7 wt.% Si alloy was performed up to 5 passes at 623 K in order to investigate the microstructure and mechanical properties of compressed alloys. The results show that multi-pass CCDC is very effective to refine the matrix grain and Mg2Si phases. After the alloy is processed for 5 passes, the mean grain size decreases from 300 μm of as-cast to 8 μm. Both dendritic and Chinese script type Mg2Si phases break into small polygonal pieces and distribute uniformly in the matrix. The tensile strength increases prominently from 118 MPa to 216 MPa, whereas the hardness of alloy deformed 5 passes only increase by 8.4% compared with as-cast state.


2002 ◽  
Vol 17 (1) ◽  
pp. 5-8 ◽  
Author(s):  
R. Z. Valiev ◽  
I. V. Alexandrov ◽  
Y. T. Zhu ◽  
T. C. Lowe

It is well known that plastic deformation induced by conventional forming methodssuch as rolling, drawing or extrusion can significantly increase the strength of metalsHowever, this increase is usually accompanied by a loss of ductility. For example, Fig.1 shows that with increasing plastic deformation, the yield strength of Cu and Almonotonically increases while their elongation to failure (ductility) decreases. Thesame trend is also true for other metals and alloys. Here we report an extraordinarycombination of high strength and high ductility produced in metals subject to severeplastic deformation (SPD). We believe that this unusual mechanical behavior is causedby the unique nanostructures generated by SPD processing. The combination ofultrafine grain size and high-density dislocations appears to enable deformation by newmechanisms. This work demonstrates the possibility of tailoring the microstructures ofmetals and alloys by SPD to obtain both high strength and high ductility. Materialswith such desirable mechanical properties are very attractive for advanced structuralapplications.


2018 ◽  
Vol 877 ◽  
pp. 50-53 ◽  
Author(s):  
Vinayashree ◽  
R. Shobha

Aluminium composites are in predominant use due to their lower weight and high strength among the MMC’s. Aluminium 6061 is selected as matrix and E-glass fiber is selected as reinforcement. Fabrication of composite is done by stir casting method. Each fabrication carries the E-glass reinforcement content varied from 2% to 10%. The present article attempts to evaluate the mechanical properties of E-glass fibre reinforced composite and study the effect of reinforcement on the matrix alloy through mechanical properties. When compared to ascast mechanical properties the UTS has increased from 74.28 N/sq mm to 146.8 N/sq mm for a composite at 6% E-glass. The hardness of as-cast has also increased from 22 RHB to 43 RHB at 6% E-glass and the wear of composite has exhibited a decreasing tend with increase in reinforcement content along the sliding distance. The results are analyzed in certain depth in the current paper. The mechanical properties of composites have improved with the increase in the weigh percentage of glass fiber in the aluminium matrix.


Sign in / Sign up

Export Citation Format

Share Document