Effect of Mo Addition on Microstructures and Mechanical Properties of Ti2AlNb Alloy

2011 ◽  
Vol 308-310 ◽  
pp. 142-145
Author(s):  
Yu Yong Chen ◽  
Zhao Xin Du ◽  
Fan Tao Kong ◽  
Shu Long Xiao ◽  
Zhen Xing Zhang

Effects of different Mo contents on microstructures and properties of Ti-22.5Al-20Nb-2V(at.%) were analyzed in this paper. Experimental results showed that the grain size was refined and the amounts of equiaxed α2 phases decreased with increase of Mo from 0.6at.% to 1.5at.%. The size of (O+B2) lath was refined when Mo from 0.6at.% to 1.2at.%. However, it seems that Mo easily segregate especially in grain boundary and become seriously with Mo increased. Compression tests showed that the yield strength and ultimate strength of alloys were obviously improved with Mo addition from 0.6at.% to 1.2at.%. Microhardness tests showed the same trend with compression yield and ultimate strength.

2010 ◽  
Vol 146-147 ◽  
pp. 1222-1226
Author(s):  
Shu Bo Li ◽  
Ya Ling Qin ◽  
Han Li ◽  
Wen Bo Du

The Mg matrix composite (Mg2Si/Mg-5Zn-2.5Er) was prepared using repeated plastic working (RPW) technique. and the effects of the number of RPW cycles on the microstructure and mechanical properties of these composites were investigated. The results indicated that the added silicon particles fully reacted with the magnesium matrix, and theMg2Si/Mg-5Zn-2.5Er composites were successfully achieved. When the number of RPW cycle increased, the size of the Mg2Si particles decreased, and the grain size of the matrix alloy reached the minimum when 200 RPW cycles was used. The best mechanical properties were also identified as 394 MPa ultimate strength, and 363 MPa yield strength, when 200 RPW cycles were used.


2012 ◽  
Vol 445 ◽  
pp. 237-240
Author(s):  
Bao Hong Zhang ◽  
Zhi Min Zhang

In order to study the effect of deformation extent on microstructure and mechanical properties of as-cast AZ91D magnesium alloy, experiments of direct extrusion were performed at temperature of 420 and different extrusion ratios. The microstructure and mechanical properties of billets and extrudates were measured. Experimental results show that the grain size of as-cast AZ91D magnesium alloy can be dramatically refined by extrusion. Direct extrusion can obviously improve the mechanical properties of as-cast AZ91D magnesium Alloy, comparing with the pre-extruded billet, the tensile strength, yield strength and elongation of extrudate can be improved by at least 83%, 154% and 150% respectively. As the extrusion ratio increases, the tensile strength and yield strength of extrudate will increase at first and then fall.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 996-1001 ◽  
Author(s):  
ZHIMIN ZHANG ◽  
BAOHONG ZHANG

As-cast ZK60 magnesium alloy that has been treated by homogenizing was forward extruded at 380°C and different extrusion ratios. Half of the extruded samples were treated by T5 treatment (10 hours at 170°C). The microstructure and mechanical properties of extruded samples that have been treated by T5 treatment and not been treated by T5 treatment have been measured. Experimental results show that the T5 treatment of extruded ZK60 magnesium alloy will cause the tensile strength and hardness to increase in some sort, the yield strength to increase obviously, but elongation to decrease slightly. When ZK60 magnesium alloy is extruded at 380°C, the second phase, MgZn and a small quantity of MnZn 2, will precipitate, and the distribution of second phase is even and dispersed. After T5 treatment, the change of grain size is not obvious, but the quantity of precipitated phase obviously increases comparing with extruded samples, and some of the precipitated phase aggregate and grow.


2013 ◽  
Vol 873 ◽  
pp. 10-18
Author(s):  
Ting Ting Jia ◽  
Guo Shi Chen ◽  
Shuo Zhang ◽  
Ming Wu ◽  
Hao Ran Geng

In this study, hypoeutectic Al-Si casting alloy was investigated to obtain high strength, according to alloying of Cu Mg, refining of Al-5Ti-B master alloy, modifing of Re and T6 heat treatment. The experimental results show that the mechanical properties of the tested alloy reach peak when addition of Al-5Ti-1B alloy is 1.0% after heat treatment, especially the yield strength, correspondingly, microstructure distribution gets to the best state. When Al-5Ti-1B exceeds 1.0%, the mechanical properties descend gradually. The metallic compounds of Mg2Si phase, CuA12 phase and W phase precipitated along the grain boundary and strengthened dispersively can improve mechanical properties of the tested alloys. The yield strength of samples added 0.1% Re (La 50%, Ce 40%) increases slightly, simultaneously, the tensile strength and elongation decreases. After 0.1% Re, the mechanical properties get down.


2010 ◽  
Vol 97-101 ◽  
pp. 496-499 ◽  
Author(s):  
Zhi Long Zhao ◽  
Zheng Chen ◽  
Lin Liu

The critical resolved stresses (CRSS) of two kinds of Al-Li alloys 2090 and 2090+Ce in which contained trace addition of cerium are examined. The three heat treatment conditions (solution, peak aging and reversion after peak aging) are used in order to identify the influence of precipitates to CRSS. The experimental results show that the strengthening contribution of T1 Phase is greatly different at various orientation with respect to rolling direction, and the precipitation of T1 phase can weaken the anisotropy of mechanical properties. The T1 phase precipitated in subgain boundaries in peak aged and reverted specimens produce a stronger tendency of delaminating along grain boundary, which is a direct reason for the decrease of anisotropic yield strength.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Hongxin Liao ◽  
Taekyung Lee ◽  
Jiangfeng Song ◽  
Jonghyun Kim ◽  
Fusheng Pan

The microstructures and mechanical properties of the Mg88.5Zn5Y6.5-XREX (RE = Yb and Ce, X = 0, 1.5, 3.0, and 4.5) (wt.%) alloys were investigated in the present study. Mg88.5Zn5Y6.5 is composed of three phases, namely, α-Mg, long-period stacking ordered (LPSO) phases, and intermetallic compounds. The content of the LPSO phases decreased with the addition of Ce and Yb, and no LPSO phases were detected in Mg88.5Zn5Y2.0Yb4.5. The alloys containing the LPSO phases possessed a stratified microstructure and exhibited excellent mechanical properties. Mg88.5Zn5Y5.0Ce1.5 exhibited the highest creep resistance and mechanical strength at both room temperature and 200 °C, owing to its suitable microstructure and high thermal stability. The yield strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature was 358 MPa. The ultimate tensile strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature and 200 °C was 453 MPa and 360 MPa, respectively.


2012 ◽  
Vol 468-471 ◽  
pp. 2124-2127 ◽  
Author(s):  
Shao Feng Zeng ◽  
Kai Huai Yang ◽  
Wen Zhe Chen

Equal channel angular pressing (ECAP) was applied to a commercial AZ61 magnesium alloy for up to 8 passes at temperatures as low as 473K. Microstructures and mechanical properties of as-received and ECAP deformed samples were investigated. The microstructure was initially not uniform with a “bimodal” grain size distribution but became increasingly homogeneous with further ECAP passes and the average grain size was considerably reduced from over 26 μm to below 5 μm. The ultimate tensile strength (UTS) decreases clearly after one pass, but increases significantly up to two passes, and then continuously slowly decreases up to six passes, and again increases slightly up to eight passes. In contrast, the uniform elongation increased significantly up to 3 passes, followed by considerable decrease up to 8 passes. These observations may be attributed to combined effects of grain refinement and texture development.


2011 ◽  
Vol 682 ◽  
pp. 211-216
Author(s):  
Rong Zhu ◽  
Jin Qiang Liu ◽  
Jing Tao Wang ◽  
Ping Huang ◽  
Yan Jun Wu ◽  
...  

Equal channel angular pressing (ECAP) has been used to refine the grain size of Mg-12Gd-3Y-0.5Zr billet at about 400°C because it lacks sufficient ductility at low temperatures. However, <0001> peak intensity is oriented about 50º from the extrusion direction, which facilitates the basal slip, and decreases the yield strength. We have employed conventional extrusion at 300°C following ECAP to modify the texture in hard orientation. This two-step process makes use of two strengthening mechanisms a) grain boundary strengthening due to small grain size, and (b) texture strengthening due to grains in hard orientation. The samples processed by the two-step show the yield and ultimate strength to 283 and 308 MPa, respectively. Moreover, the activation of <c+a> slip and fine grains resulted from the ECAP helped to maintain a good ductility even after significant straining from conventional extrusion.


2011 ◽  
Vol 214 ◽  
pp. 108-112 ◽  
Author(s):  
Prachya Peasura ◽  
Bovornchok Poopat

The Inconel X-750 indicates good hot corrosion resistance, high stability and strength at high temperatures and for this reason the alloy is used in manufacturing of gas turbine hot components. The objective of this research was study the effect of post weld heat treatment (PWHT) on fusion zone and heat affected zone microstructure and mechanical properties of Inconel X-750 weld. After welding, samples were solutionized at 1500 0C. Various aging temperature and times were studied. The results show that aging temperature and time during PWHT can greatly affect microstructure and hardness in fusion zone and heat affected zone. As high aging temperature was used, the grain size also increased and M23C6 at the grain boundary decreased. This can result in decreased of hardness. Moreover excessive aging temperature can result in increasing MC carbide intensity in parent phase (austenite). It can also be observed that M23C6 at the grain boundary decreased due to high aging temperature. This resulted in decreasing of hardness of weld metal and heat affected zone. Experimental results showed that the aging temperature 705 0C aging time of 24 hours provided smaller grain size, suitable size and intensity of MC carbide resulting in higher hardness both in weld metal and HAZ.


2007 ◽  
Vol 353-358 ◽  
pp. 715-717
Author(s):  
Jian Peng ◽  
Rong Shen Liu ◽  
Ding Fei Zhang ◽  
Cheng Meng Song

The microstructures and mechanical properties of Mg-Zn-Zr-Y alloy extruded bar with different heat treatment processes were investigated, including solution treatments of 400 oC, 450 oC and 500 oC for 3 hours followed by 170 oC×24h aging treatment, and solely aging treatments of 160 oC, 180 oC for 24hours without solution after extruding. By comparing the grain size, strength and elongation of the samples, the heat treatment processes for extruded products with high strength and with medium strength were recommended.


Sign in / Sign up

Export Citation Format

Share Document