The Cause Analysis of Pseudo Solder in Surface Mounted Technology

2010 ◽  
Vol 146-147 ◽  
pp. 895-898
Author(s):  
Fu Pei Wu ◽  
Sheng Ping Li

Pseudo solder is one kind of familiar solder joint defect, and it is very difficult to be detected in surface mounted technology. Reduce the pseudo solder is viewed as one of effectively way to keep the quality of solder joints. In this manuscript, the quality of component, solder paste printing process, mounting processing, reflowing process, solder material are analyzed to illustrate the cause of pseudo solder in surface mounted technology. Based on the five factors, a pseudo solder model is built for IC component. In the pseudo solder model, its parameters are used corresponding to the cause of pseudo solder, and their values are used to evaluate the degree of satisfaction based on the SMT technological process. Experiments results show that parameters of the pseudo solder model can illustrate the cause of pseudo solder effectively.

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 733
Author(s):  
Lu Liu ◽  
Songbai Xue ◽  
Ruiyang Ni ◽  
Peng Zhang ◽  
Jie Wu

In this study, a Sn–Bi composite solder paste with thermosetting epoxy (TSEP Sn–Bi) was prepared by mixing Sn–Bi solder powder, flux, and epoxy system. The melting characteristics of the Sn–Bi solder alloy and the curing reaction of the epoxy system were measured by differential scanning calorimeter (DSC). A reflow profile was optimized based on the Sn–Bi reflow profile, and the Organic Solderability Preservative (OSP) Cu pad mounted 0603 chip resistor was chosen to reflow soldering and to prepare samples of the corresponding joint. The high temperature and humidity reliability of the solder joints at 85 °C/85% RH (Relative Humidity) for 1000 h and the thermal cycle reliability of the solder joints from −40 °C to 125 °C for 1000 cycles were investigated. Compared to the Sn–Bi solder joint, the TSEP Sn–Bi solder joints had increased reliability. The microstructure observation shows that the epoxy resin curing process did not affect the transformation of the microstructure. The shear force of the TSEP Sn–Bi solder joints after 1000 cycles of thermal cycling test was 1.23–1.35 times higher than the Sn–Bi solder joint and after 1000 h of temperature and humidity tests was 1.14–1.27 times higher than the Sn–Bi solder joint. The fracture analysis indicated that the cured cover layer could still have a mechanical reinforcement to the TSEP Sn–Bi solder joints after these reliability tests.


2018 ◽  
Vol 2018 (1) ◽  
pp. 000534-000542
Author(s):  
Ephraim Suhir ◽  
Sung Yi ◽  
Jennie S. Hwang ◽  
R. Ghaffarian

Abstract The “head-in-pillow” (HnP) defects in lead-free solder joint interconnections of IC packages with conventional (small) stand-off heights of the solder joints, and particularly in packages with fine pitches, are attributed by many electronic material scientists to the three major causes: 1) attributes of the manufacturing process, 2) solder material properties and 3)design-related issues. The latter are thought to be caused primarily by elevated stresses in the solder material, as well as by the excessive warpage of the PCB-package assembly and particularly to the differences in the thermally induced curvatures of the PCB and the package. In this analysis the stress-and-warpage issue is addressed using an analytical predictive stress model. This model is a modification and an extension of the model developed back in 1980-s by the first author. It is assumed that it is the difference in the post-fabrication deflections of the PCB-package assembly that is the root cause of the solder materials failures and particularly and perhaps the HnP defects. The calculated data based on the developed analytical thermal stress model suggest that the replacement of the conventional ball-grid-array (BGA) designs with designs characterized by elevated stand-off heights of the solder joints could result in significant stress and warpage relief and, hopefully, in a lower propensity of the IC package to HnP defects as well. The general concepts are illustrated by a numerical example, in which the responses to the change in temperature of a conventional design referred to as ball-grid-array (BGA) and a design with solder joints with elevated stand-off heights referred to as column-grid-array (CGA) are compared. The computed data indicated that the effective stress in the solder material is relieved by about 40% and the difference between the maximum deflections of the PCB and the package is reduced by about 60%, when the BGA design is replaced by a CGA system. Although no proof that the use of solder joints with elevated stand-off heights will lessen the package propensity to the HnP defects is provided, the authors think that there is a reason to believe that the application of solder joints with elevated stand-off heights could result in a substantial improvement in the general IC package performance, including, perhaps, its propensity to HnP defects.


2018 ◽  
Vol 30 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Fakhrozi Che Ani ◽  
Azman Jalar ◽  
Abdullah Aziz Saad ◽  
Chu Yee Khor ◽  
Roslina Ismail ◽  
...  

Purpose This paper aims to investigate the characteristics of ultra-fine lead-free solder joints reinforced with TiO2 nanoparticles in an electronic assembly. Design/methodology/approach This study focused on the microstructure and quality of solder joints. Various percentages of TiO2 nanoparticles were mixed with a lead-free Sn-3.5Ag-0.7Cu solder paste. This new form of nano-reinforced lead-free solder paste was used to assemble a miniature package consisting of an ultra-fine capacitor on a printed circuit board by means of a reflow soldering process. The microstructure and the fillet height were investigated using a focused ion beam, a high-resolution transmission electron microscope system equipped with an energy dispersive X-ray spectrometer (EDS), and a field emission scanning electron microscope coupled with an EDS and X-ray diffraction machine. Findings The experimental results revealed that the intermetallic compound with the lowest thickness was produced by the nano-reinforced solder with a TiO2 content of 0.05 Wt.%. Increasing the TiO2 content to 0.15 Wt.% led to an improvement in the fillet height. The characteristics of the solder joint fulfilled the reliability requirements of the IPC standards. Practical implications This study provides engineers with a profound understanding of the characteristics of ultra-fine nano-reinforced solder joint packages in the microelectronics industry. Originality/value The findings are expected to provide proper guidelines and references with regard to the manufacture of miniaturized electronic packages. This study also explored the effects of TiO2 on the microstructure and the fillet height of ultra-fine capacitors.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1295
Author(s):  
Sri Harini Rajendran ◽  
Seung Jun Hwang ◽  
Jae Pil Jung

This study investigates the shear strength and aging characteristics of Sn-3.0Ag-0.5Cu (SAC 305)/Cu joints by the addition of ZrO2 nanoparticles (NPs) having two different particle size: 5–15 nm (ZrO2A) and 70–90 nm (ZrO2B). Nanocomposite pastes were fabricated by mechanically mixing ZrO2 NPs and the solder paste. ZrO2 NPs decreased the β-Sn grain size and Ag3Sn intermetallic compound (IMC) in the matrix and reduced the Cu6Sn5 IMC thickness at the interface of lap shear SAC 305/Cu joints. The effect is pronounced for ZrO2A NPs added solder joint. The solder joints were isothermally aged at 175 °C for 24, 48, 144 and 256 h. NPs decreased the diffusion coefficient from 1.74 × 10–16 m/s to 3.83 × 10–17 m/s and 4.99 × 10–17 m/s for ZrO2A and ZrO2B NPs added SAC 305/Cu joints respectively. The shear strength of the solder joints decreased with the aging time due to an increase in the thickness of interfacial IMC and coarsening of Ag3Sn in the solder. However, higher shear strength exhibited by SAC 305-ZrO2A/Cu joints was attributed to the fine Ag3Sn IMC’s dispersed in the solder matrix. Fracture analysis of SAC 305-ZrO2A/Cu joints displayed mixed solder/IMC mode upon 256 h of aging.


2013 ◽  
Vol 25 (3) ◽  
pp. 164-174 ◽  
Author(s):  
Yong‐Won Lee ◽  
Keun‐Soo Kim ◽  
Katsuaki Suganuma

PurposeThe purpose of this paper is to study the effect of the electropolishing time of stencil manufacturing parameters and solder‐mask definition methods of PCB pad design parameters on the performance of solder paste stencil printing process for the assembly of 01005 chip components.Design/methodology/approachDuring the study, two types of stencils were manufactured for the evaluations: electroformed stencils and electropolished laser‐cut stencils. The electroformed stencils were manufactured using the standard electroforming process and their use in the paste printing process was compared against the use of an electropolished laser‐cut stencil. The electropolishing performance of the laser‐cut stencil was evaluated twice at the following intervals: 100 s and 200 s. The performance of the laser‐cut stencil was also evaluated without electropolishing. An optimized process was established after the polished stencil apertures of the laser‐cut stencil were inspected. The performance evaluations were made by visually inspecting the quality of the post‐surface finishing for the aperture wall and the quality of that post‐surface finishing was further checked using a scanning electron microscope. A test board was used in a series of designed experiments to evaluate the solder paste printing process.FindingsThe results demonstrated that the length of the electropolishing time had a significant effect on the small stencil's aperture quality and the solder paste's stencil printing performance. In this study, the most effective electropolishing time was 100 s for a stencil thickness of 0.08 mm. The deposited solder paste thickness was significantly better for the enhanced laser‐cut stencil with electropolishing compared to the conventional electroformed stencils. In this printing‐focused work, print paste thickness measurements were also found to vary across different solder‐mask definition methods of printed circuit board pad designs with no change in the size of the stencil aperture. The highest paste value transfer consistently occurred with solder‐mask‐defined pads, when an electropolished laser‐cut stencil was used.Originality/valueDue to important improvements in the quality of the electropolished laser‐cut stencil, and based on the results of this experiment, the electropolished laser‐cut stencil is strongly recommended for the solder paste printing of fine‐pitch and miniature components, especially in comparison to the typical laser‐cut stencil. The advantages of implementing a 01005 chip component mass production assembly process include excellent solder paste release, increased solder volume, good manufacture‐ability, fast turnaround time, and greater cost saving opportunities.


2019 ◽  
Vol 16 (1) ◽  
pp. 13-20
Author(s):  
Ephraim Suhir ◽  
Sung Yi ◽  
Jennie S. Hwang ◽  
Reza Ghaffarian

Abstract The “head-in-pillow” (HnP) defects in lead-free solder joint interconnections of Integrated Circuit (IC) packages with conventional (small) standoff heights of the solder joints, and particularly in packages with fine pitches, are attributed by many electronic material scientists to the three major causes: attributes of the manufacturing process, solder material properties, and design-related issues. The latter are thought to be caused primarily by elevated stresses in the solder material, as well as by the excessive warpage of the Printed Circuit Board (PCB)-package assembly and particularly by the differences in the thermally induced curvatures of the PCB and the package. In this analysis, the stress and warpage issue is addressed using an analytical predictive stress model. The model is a modification and an extension of the model developed back in 1980s by the first author. It is assumed that it is the difference in the postfabrication deflections of the PCB-package assembly that is the root cause of the solder material failures and particularly and perhaps the HnP defects. The calculated data based on the developed stress model suggest that the replacement of the conventional ball grid array (BGA) designs with designs with elevated standoff heights of the solder joints could result in significant stress and warpage relief and, hopefully, in a lower propensity of the IC package to HnP defects as well. The general concepts are illustrated by a numerical example, in which the responses to the change in temperature of a conventional design, referred to as BGA, and a design with solder joints with elevated standoff heights, referred to as column grid array (CGA), are compared. The computed data indicated that the effective stress in the solder material was relieved by about 40% and the difference between the maximum deflections of the PCB and the package was reduced by about 60%, when the BGA design was replaced by a CGA system. Although no definite proof that the use of solder joints with elevated standoff heights will lessen the package propensity to the HnP defects is provided, the authors nonetheless think that there is a reason to believe that the application of solder joints with elevated standoff heights could result in a substantial improvement in the general IC package performance, including, perhaps, its propensity to HnP defects.


2021 ◽  
pp. 326-337
Author(s):  
Qiming Zhang ◽  
Babak Kondori ◽  
Xing Qiu ◽  
Jeffry C.C. Lo ◽  
S.W. Ricky Lee

Abstract Due to the recent requirement of higher integration density, solder joints are getting smaller in electronic product assemblies, which makes the joints more vulnerable to failure. Thus, the root-cause failure analysis for the solder joints becomes important to prevent failure at the assembly level. This article covers the properties of solder alloys and the corresponding intermetallic compounds. It includes the dominant failure modes introduced during the solder joint manufacturing process and in field-use applications. The corresponding failure mechanism and root-cause analysis are also presented. The article introduces several frequently used methods for solder joint failure detection, prevention, and isolation (identification for the failed location).


2016 ◽  
Vol 9 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Dina Miragaia ◽  
Diogo Conde ◽  
Jorge Soares

This study determined the consumer’s profile in winter sports, using their degree of satisfaction with services provided by a ski resort. A questionnaire was administered to 229 tourists/visitors and analyzed their satisfaction according to five factors: facilities and equipment; attributes of the slopes; resort services; restaurants, accommodation and social activities; and also about the access to the resort. Determination between levels of satisfaction indicated by different consumer segments was performed using a cluster analysis. The clusters identified were: partially satisfied, dissatisfied, dissatisfied with everything, satisfied with everything. In relation to gender, no significant differences were identified in any cluster. With regard to experience to visited other ski resorts, significant differences were found between tourists/visitors which have already done, comparing with the individuals who never been in a similar context. It was found that only 5.2% of consumers who have had similar experiences with other ski resorts were satisfied with all services provided. The results of this study enable to the managers identify the attributes by which tourists/visitors have a higher level of satisfaction/dissatisfaction and foremost identify the valences which can be subject to some kind of improvement. This approach enables the adaptation of services according the preferences and expectations of tourists/visitors, with the prospect of incrementing consumer loyalty.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 960 ◽  
Author(s):  
Min-Soo Kang ◽  
Do-Seok Kim ◽  
Young-Eui Shin

To analyze the reinforcement effect of adding polymer to solder paste, epoxies were mixed with two currently available Sn-3.0Ag-0.5Cu (wt.% SAC305) and Sn-59Bi (wt.%) solder pastes and specimens prepared by bonding chip resistors to a printed circuit board. The effect of repetitive thermal stress on the solder joints was then analyzed experimentally using thermal shock testing (−40 °C to 125 °C) over 2000 cycles. The viscoplastic stress–strain curves generated in the solder were simulated using finite element analysis, and the hysteresis loop was calculated. The growth and propagation of cracks in the solder were also predicted using strain energy formulas. It was confirmed that the epoxy paste dispersed the stress inside the solder joint by externally supporting the solder fillet, and crack formation was suppressed, improving the lifetime of the solder joint.


Author(s):  
Sami T. Nurmi ◽  
Janne J. Sundelin ◽  
Eero O. Ristolainen ◽  
Toivo K. Lepisto¨

As environmental issues are raising more interest and are becoming crucial factors in all parts of the world, more and more environmental-friendly electronics products are emerging. Usually this means the introduction of products with lead-free solders. However, the reliability of lead-free solders is still a serious concern despite the vast research done in this field. This paper will describe the interconnect reliability of three kinds of solder joints respectively prepared with lead-free solder paste and lead-free PBGA components, lead-free solder paste and tin-lead-silver PBGA components, and tin-lead solder paste and tin-lead-silver PBGA components. Lead-free and tin-lead solders were composed of eutectic tin-silver-copper and tin-lead, respectively. In addition, the study also presents the effect of multiple reflow times. The study focuses on the microstructures of different assemblies. The particular interest is on the assemblies soldered with lead-free solder paste and tin-lead-silver PBGA components, since the SnPbAg solder on the bumps of the PBGA components were exposed to the reflow profile meant for the lead-free SnAgCu solder. Thus, these SnPbAg solder bumps were in the molten state almost twice as long as the rest of the solders. This had a notable effect on the reliability of these solder joints as we will be showing later in this paper. The test boards were temperature-cycled for 2500 cycles between −40 and +125°C (a 30-minute cycle). PBGA solder joint failures were monitored with a real time monitoring system. Optical and scanning electron microscopy was used to inspect the broken solder joints and their microstructure. The results of tests indicate that the number of reflow times can significantly affect the lifetime of PBGA solder joints. The most notable changes can be seen in the solder joints made with tin-lead-silver PBGA components and tin-silver-copper solder paste soldered with a lead-free reflow profile. The general trend was that the reliability of the solder joints increased in proportion to the number of reflow times. Mainly two factors are believed to have the major effect on the reliability of PBGA solder joints, voids, and microstructural changes in solder.


Sign in / Sign up

Export Citation Format

Share Document