Effect of Incident Angle on Laser Transformation Hardening Layer Microstructure and Properties

2010 ◽  
Vol 148-149 ◽  
pp. 606-610
Author(s):  
Xing Wu Qiu

Laser transformation hardening was carried out by HL-1500 CO2 laser on 40Cr steel. The macroscopic and properties were analysised by scanning electron microscope, X-ray diffractometer, microhardness meter and potentiostat. The result indicated that, the hardening layer is mainly constitute by Fe-Cr, C0.09Fe1.91, Fe2Si. After laser transformation hardening the hardness enhanced greatly, the maximum of hardness appears in the subsurface, which value is as about four times as that of the substrate, both wear resistance and corrosion resistance are improved. With the increase of the laser incident angle, microstructure’s inhomogeneity becomes larger, properties become decreased.

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4045
Author(s):  
Rafał Mech ◽  
Jolanta Gąsiorek ◽  
Amadeusz Łaszcz ◽  
Bartosz Babiarczuk

The paper presents a comparison of the results of the corrosion resistance for three Fe-B-Co-Si-based newly developed alloys with the addition of Nb and V. The corrosion performance differences and microstructure variations were systematically studied using scanning electron microscope, electric corrosion equipment, X-ray diffractometer, and differential calorimeter. It has been shown that each alloying addition increased the corrosion resistance. The highest corrosion resistance obtained by potentiodynamic polarization was found for the alloy with both Nb and V addons (Fe57Co10B20Si5Nb4V4) and lowest in the case of the basic four-element Fe62Co15B14Si9 material. This shows that the proper choice of additions is of significant influence on the final performance of the alloy and allows tailoring of the material for specific applications.


2011 ◽  
Vol 391-392 ◽  
pp. 1183-1188 ◽  
Author(s):  
Jian Hua Wang ◽  
Xing Ming Wang ◽  
Chun Mei Liu ◽  
Xu Ping Su ◽  
Chang Jun Wu ◽  
...  

The microstructure of the galvanized coating was investigated using scanning electron microscope equipped with energy dispersive X-ray spectroscope. The immersing and electrochemical corrosion tests were carried out to study the corrosion resistance of the galvanized coating. The addition of Bi in Zn-bath affects remarkably the morphology of the galvanized coating. The thickness of δ + ζ phase layer in the coating reaches the maximum when the content of Bi in Zn-bath is 0.5 wt.%. The corrosion resistance of the galvanized coating declines with the increase of the content of Bi.


2011 ◽  
Vol 18 (03n04) ◽  
pp. 103-108 ◽  
Author(s):  
JIANING LI ◽  
CHUANZHONG CHEN ◽  
CUIFANG ZHANG

Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2 , leading to the formations of Ti3Al and B . This principle can be used to improve the Fe3Al + B4C/TiN laser-cladded coating on the Ti-6Al-4V alloy. Furthermore, during the cladding process, C consumed the oxygen in Fe3Al + B4C /TiN + Al2O3 molten pool, which retarded the productions of the redundant metal oxides.


2005 ◽  
Vol 107 ◽  
pp. 145-150 ◽  
Author(s):  
Chatdanai Boonruang ◽  
Titipun Thongtem ◽  
Michael J. McNallan ◽  
Somsorn Singkarat ◽  
Somchai Thongtem

Two γ-TiAl alloys, Ti-47Al-2Nb-2Cr (MJ12) and Ti-47Al-2Nb-2Mn-0.8TiB2 (MJ47), were pressed in C powder to form rods and carburized by directly applying electrical power through them at 274.3 ± 26.4 W, 80 A for MJ12 and at 293.4 ± 16.8 W, 80 A for MJ47 in Ar atmosphere. The alloys were analysed using an x-ray diffractometer (XRD), a scanning electron microscope (SEM) equipped with an energy dispersive x-ray (EDX) analyser and a Rutherford backscattering spectrometer (RBS) incorporated with NUSDAN solfware. Knoop hardness and wear resistance were improved and found to be in accord with the analytical results.


2013 ◽  
Vol 20 (06) ◽  
pp. 1350060 ◽  
Author(s):  
GAO YUXIN ◽  
YI JIAN

La 2 O 3 doped Ni -based coatings have been prepared by electrospark deposition technique. The effect of La 2 O 3 on the microstructure, hardness and wear behavior of the as-prepared Ni -based coatings is investigated by using X-ray diffractometer, scanning electron microscope, wear tribometer and Vickers hardness tester. Results indicates that the microstructure, hardness and wear resistance of La 2 O 3 doped Ni -based coatings are effectively improved as compared to the undoped one, and the coating with the addition of 2.5 wt.% La 2 O 3 shows the optimal improvement effects. The addition of La 2 O 3 can reduce the defects, refine grains and increase hardness of the coating, which can inhibit the nucleation and propagation of cracking, consequently resist cutting and fracture during the wear process. Moreover, the addition of La 2 O 3 leads to changes in abrasion mechanism of the coatings, and the reasons resulting in different abrasion mechanisms are discussed.


Author(s):  
W. Brünger

Reconstructive tomography is a new technique in diagnostic radiology for imaging cross-sectional planes of the human body /1/. A collimated beam of X-rays is scanned through a thin slice of the body and the transmitted intensity is recorded by a detector giving a linear shadow graph or projection (see fig. 1). Many of these projections at different angles are used to reconstruct the body-layer, usually with the aid of a computer. The picture element size of present tomographic scanners is approximately 1.1 mm2.Micro tomography can be realized using the very fine X-ray source generated by the focused electron beam of a scanning electron microscope (see fig. 2). The translation of the X-ray source is done by a line scan of the electron beam on a polished target surface /2/. Projections at different angles are produced by rotating the object.During the registration of a single scan the electron beam is deflected in one direction only, while both deflections are operating in the display tube.


Author(s):  
Marc H. Peeters ◽  
Max T. Otten

Over the past decades, the combination of energy-dispersive analysis of X-rays and scanning electron microscopy has proved to be a powerful tool for fast and reliable elemental characterization of a large variety of specimens. The technique has evolved rapidly from a purely qualitative characterization method to a reliable quantitative way of analysis. In the last 5 years, an increasing need for automation is observed, whereby energy-dispersive analysers control the beam and stage movement of the scanning electron microscope in order to collect digital X-ray images and perform unattended point analysis over multiple locations.The Philips High-speed Analysis of X-rays system (PHAX-Scan) makes use of the high performance dual-processor structure of the EDAX PV9900 analyser and the databus structure of the Philips series 500 scanning electron microscope to provide a highly automated, user-friendly and extremely fast microanalysis system. The software that runs on the hardware described above was specifically designed to provide the ultimate attainable speed on the system.


Arena Tekstil ◽  
2013 ◽  
Vol 28 (1) ◽  
Author(s):  
Maya Komalasari ◽  
Bambang Sunendar

Partikel nano TiO2 berbasis air dengan pH basa telah berhasil disintesis dengan menggunakan metode sol-gel dan diimobilisasi pada kain kapas dengan menggunakan kitosan sebagai zat pengikat silang. Sintesis dilakukan  dengan prekursor TiCl4 pada konsentrasi 0,3 M, 0,5 M dan 1 M, dan menggunakan templat kanji dengan proses kalsinasi pada suhu 500˚C selama 2 jam. Partikel nano TiO2 diaplikasikan ke kain kapas dengan metoda pad-dry-cure dan menggunakan kitosan sebagai crosslinking agent. Berdasarkan hasil Scanning Electron Microscope (SEM),diketahui bahwa morfologi partikel TiO2 berbentuk spherical dengan ukuran nano (kurang dari 100 nm). Karakterisasi X-Ray Diffraction (XRD) menunjukkan adanya tiga tipe struktur kristal utama, yaitu (100), (101) dan (102) dengan fasa kristal yang terbentuk adalah anatase dan rutile. Pada karakterisasi menggunakan SEM terhadap serbuk dari TiO2 yang telah diaplikasikan ke permukaan kain kapas, terlihat adanya imobilisasi partikel nano TiO2 melalui ikatan hidrogen silang dengan kitosan pada kain kapas. Hasil analisa tersebut kemudian dikonfirmasi dengan FTIR (Fourier Transform Infra Red) yang hasilnya memperlihatkan puncak serapan pada bilangan gelombang 3495 cm-1, 2546 cm-1, dan 511 cm-1,  yang masing-masing diasumsikan sebagai adanya vibrasi gugus fungsi O-H, N-H dan Ti-O-Ti. Hasil SEM menunjukkan pula bahwa kristal nano yang terbentuk diantaranya adalah fasa rutile , yang berdasarkan literatur terbukti dapatberfungsi sebagai anti UV.


2013 ◽  
Vol 19 (S2) ◽  
pp. 692-693
Author(s):  
P. Trimby

Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.


Sign in / Sign up

Export Citation Format

Share Document