Research of Properties and Preparation on Zero-VOC Acrylic Elastic Emulsion

2010 ◽  
Vol 150-151 ◽  
pp. 745-748 ◽  
Author(s):  
Qian Xu ◽  
Shao Guo Wen ◽  
Hong Bo Liu ◽  
Ji Hu Wang ◽  
Yan Shen

The core-shell acrylic emulsion was synthesized,with P(MMA/BA) as core,and with P(2-EHA/MBA/HPA) as shell. The influence of the mass ratio of core/shell on mechanical properties was investigated in detail. The high elongation at break proved that the emulsion may have a potential application in coating industry, afforded by HPA as functional monomer. However, when the amount of HPA exceeds 1.5 wt. % to the total monomers, the emulsion will become unstable and precipitation occurs.

2013 ◽  
Vol 781-784 ◽  
pp. 390-394
Author(s):  
Xiao Li Song ◽  
Ying Chen ◽  
Yu Zhi Xu ◽  
Chun Peng Wang

Polyacrylate microsphere with different core/shell ratio (mass ratio) were prepared by semi-continuous seed emulsion copolymerization using butyl acrylate (BA) and methyl methacrylate (MMA) as main monomers,which were used to toughen polylactic acid (PLA) after drying. The effect of core/shell ratio of polyacrylate toughening agent (ACR) on mechanical properties of PLA was studied. The results showed that when adding 8wt%ACR, the impact strength and elongation at break of PLA were both first increased and then decreased as increasing of core/shell ratio, while the tensile strength loss of PLA was little changed. It is found that the impact strength was increased about 24% than that of neat PLA as well as the elongation at break was increased from 2% to 12% when the ratio was 7/3, which was the best ratio.


2018 ◽  
Vol 163 ◽  
pp. 02002 ◽  
Author(s):  
Elzbieta Horszczaruk ◽  
Roman Jedrzejewski ◽  
Jolanta Baranowska ◽  
Ewa Mijowska

The results of investigation of the cement composites modified with 5% of silica-magnetite nanostructures of the core-shell type are presented in the paper. The nanoindentation method employing three-sided pyramidal Berkovich indenter was used in the research. The mechanical properties and microstructure of the modified cement composites were evaluated on the basis of the values of hardness and indentation modulus measured inside the cement matrix and in the aggregate-paste interfacial zone. The results were compared with those obtained for the reference composites without nanostructures. The positive influence of the presence of silica-magnetite nanoparticles on the tested properties was found out.


2020 ◽  
Vol 90 ◽  
pp. 106767
Author(s):  
Tao Peng ◽  
Fei Lv ◽  
Zhou Gong ◽  
Liming Cao ◽  
Xuesong Yan ◽  
...  

1993 ◽  
Vol 8 (4) ◽  
pp. 871-879 ◽  
Author(s):  
C.A. Randall ◽  
S.F. Wang ◽  
D. Laubscher ◽  
J.P. Dougherty ◽  
W. Huebner

A sintering, microstructural development and dielectric property study of BaTiO3–LiF ceramics was performed to assess the potential application of low-fired multilayer capacitors. Not only does LiF allow for sintering below 1000 °C, it also allows for the manipulation of dielectric properties and interfaces within BaTiO3–LiF ceramics. Using mixing laws, a model of the dielectric properties of the core-shell microstructures is presented that agrees well with the observed experimental data.


Author(s):  
Vuong Van Thanh ◽  
Tran The Quang ◽  
Nguyen Tuan Hung ◽  
Vu Le Huy ◽  
Do Van Truong

Nanowires (NWs) have been used increasingly in practice due to their outstanding mechanical, physical, and chemical properties. In this paper, we use the molecular dynamics (MD) method to investigate the mechanical properties of NWs (Si/Ge, Ge/Si) with a core-shell structure under the axial tensile strain along the <100>/{100} direction. Our results show that the strength and elastic modulus of Ge/Si and Si/Ge NWs depend on the composition and size of the core/shell crosssection. The strength and strain of Ge/Si NW decrease with increasing the size of the core crosssection because of the lattice mismatch between two layers of core/shell materials. The elastic modulus of Ge/Si NWs increases with the increasing the size of the core cross-section, while the elastic modulus of the Si/Ge NW decreases. In addition, the theoretical strength and elastic modulus of Ge/Si NWs reduce with the growth of the temperature. Furthermore, we also investigate the effect of strain rate on the mechanical properties of the Ge/Si NWs. The obtained results of the study provide the intrinsic properties of the core-shell NWs and also help in the design and fabrication of electronic and optical devices based on the Ge/Si NWs.


2010 ◽  
Vol 92 ◽  
pp. 241-246 ◽  
Author(s):  
Yu Zhi Jiang ◽  
Yan Bo Li ◽  
Yue Xin Han ◽  
Wan Zhong Yin

The magnesium oxysulfate whisker/ABS composites were prepared by making the magnesium oxysulfate whisker as dispersed phase.Scaning electron microscope(SEM) was used to test the distribution of whiskers in ABS matrix.Effect of the surface modification and the amount of whiskers to the mechanical properties of composites were studied.The results show that,the surface modification can improve effectively dispersity both itself and in ABS matrix,interface acting force between ABS matrix and whiskers, and mechanical properties of composites ,remarkably.When the mass ratio of whisker to ABS is 40/100,the composite owns the optimum mechanical properties(Tensile strength,elastic modulus,and elongation at break are 67.5Mpa, 7.50Mpa,4.70%,respectively), whiskers distribute uniformly in matrix and improve the dimensioned stability of composites.The reinforcement mechanism of whiskers in ABS was also studied to explain the experimental results.


2015 ◽  
Vol 17 (4) ◽  
pp. 128-133 ◽  
Author(s):  
Chenglin Cui ◽  
Hao Ding ◽  
Li Cao ◽  
Daimei Chen

Abstract A new CaCO3-SiO2 composite with core-shell structure was successfully prepared by mechano-chemistry method (MCM). SEM and FTIR indicated that SiO2 particles were homogeneously immobilized on the surface of CaCO3. The well dispersion of this CaCO3-SiO2 composite into silicone rubber can not only reduce the usage amount of SiO2, but also improve the mechanical properties of silicone rubber. By the calculation, the theoretical numbers of the SiO2 particles is about 10 times as large as that of CaCO3 particles in the CaCO3-SiO2 composite. Mixing CaCO3-SiO2 composite in silicone rubber can enhance the breaking strength of the silicone rubber about 18% as high as that when mixing the pure SiO2. And the elongation at break is about 14% less than that of adding the pure SiO2 sample.


Sign in / Sign up

Export Citation Format

Share Document