Finite Element Analysis of Molten Pool Depth and Dilution Rate in Laser Clad TiC/NiCrBSiC Coatings on Ti6Al4V

2010 ◽  
Vol 154-155 ◽  
pp. 951-954
Author(s):  
Yi Wen Lei ◽  
Cheng Qiang Gong ◽  
Rong Lu Sun

A three-dimensional model was proposed to simulate high power laser clad TiC/NiCrBSiC composite coatings on Ti6Al4V alloys. Molten pool depth and dilution rate were obtained and compared with the experimental results. The calculated molten pool depth in the sample is about 0.76 mm and dilution rate is 21 %. The experimental data molten pool depth and dilution rate were 0.81 mm and 26%, respectively. There is a good agreement between the numerical and experimental results. A good quality laser clad TiC/NiCrBSiC coating with low dilution rate and excellent metallurgical bond can be prepared under the optimal parameters.

2013 ◽  
Vol 284-287 ◽  
pp. 996-1000 ◽  
Author(s):  
Jong Boon Ooi ◽  
Xin Wang ◽  
Ying Pio Lim ◽  
Ching Seong Tan ◽  
Jee Hou Ho ◽  
...  

Portal axle unit is a gearbox unit installed on every end axles of the vehicle. It is installed to the vehicle to give higher ground clearance to enable vehicle to go over large obstacle when driving in off-road conditions. Shafts must be exceptionally tough and lightweight to improve the overall performance of the portal axle unit. In this paper, the shaft is analyzed in three-dimensional model and the stress of the shaft model is analyzed using finite element analysis (FEA). The FEA result is compared with experimental results.


2014 ◽  
Vol 69 (6) ◽  
pp. 1334-1343 ◽  
Author(s):  
Shasha Lu ◽  
Ruijie Li ◽  
Xiaoming Xia ◽  
Jun Zheng

Measuring pollutant concentrations in major tributaries is the standard method for establishing pollutant fluxes to the sea. However, this method is costly and difficult, and may be subject to a great deal of uncertainty due to the presence of unknown sources. This uncertainty presents challenges to managers and scientists in reducing contaminant discharges to water bodies. As one less costly method, a three-dimensional model was developed and used to predict pollutant fluxes to the sea. The sorptive contaminant model was incorporated into hydrodynamic and sediment models. Adsorption–desorption of copper by sediments in the Oujiang estuary were described using Henry's law. The model was validated using measured data for water surface elevations, flow velocity/direction, suspended sediment concentrations, and the proportion of copper sorbed to sediment. The validated model was then applied to predict fluxes of copper. Combined with the measured data, the copper concentration in the Oujiang River discharge was calculated as 13.0 μg/L and copper fluxes were calculated as 52 t in 2010. This copper flux prediction was verified using measured dissolved copper concentrations. Comparisons between the modeled and measured results showed good agreement at most stations, demonstrating that copper flux prediction in the Oujiang estuary was reasonably accurate.


2011 ◽  
Vol 201-203 ◽  
pp. 643-646 ◽  
Author(s):  
Bo Yan Xu ◽  
Hai Ying Tian ◽  
Jie Yang ◽  
De Zhi Sun ◽  
Shao Li Cai

SNCR (Selective Non Catalytic Reduction) system is proposed, with 40% methylamine aqueous solution as reducing agent to reduce NOx in diesel exhaust gas. The effect of injection position and volume on the reduction efficiency through the test bench is systematically researched. A three-dimensional model of a full-sized diesel SNCR system generated by CFD software FIRE is used to investigate the reduction efficiency under different temperatures. The simulated results have a good agreement with the test results, and it can be used to optimize SNCR system. The results can indicate the practical application of this technology.


Author(s):  
G. P. Ong ◽  
T. F. Fwa ◽  
J. Guo

Hydroplaning on wet pavement occurs when a vehicle reaches a critical speed and causes a loss of contact between its tires and the pavement surface. This paper presents the development of a three-dimensional finite volume model that simulates the hydroplaning phenomenon. The theoretical considerations of the flow simulation model are described. The simulation results are in good agreement with the experimental results in the literature and with those obtained by the well-known hydroplaning equation of the National Aeronautics and Space Administration (NASA). The tire pressure–hydroplaning speed relationship predicted by the model is found to match well the one obtained with the NASA hydroplaning equation. Analyses of the results of the present study indicate that pavement microtexture in the 0.2- to 0.5-mm range can delay hydroplaning (i.e., raise the speed at which hydroplaning occurs). The paper also shows that the NASA hydroplaning equation provides a conservative estimate of the hydroplaning speed. The analyses in the present study indicate that when the microtexture of the pavement is considered, the hydroplaning speed predicted by the proposed model deviates from the speed predicted by the smooth surface relationship represented by the NASA hydroplaning equation. The discrepancies in hydroplaning speed are about 1% for a 0.1-mm microtexture depth and 22% for a 0.5-mm microtexture depth. The validity of the proposed model was verified by a check of the computed friction coefficient against the experimental results reported in the literature for pavement surfaces with known microtexture depths.


Author(s):  
Y Guo ◽  
J P Hu ◽  
L Y Zhang

This article treats the pile driving as multi-body dynamic contacts. By using the penalty function method and three-dimensional model of finite-element method, the dynamic process of pile driving is acquired and a method for choosing the cushion material of the hydraulic pile hammer to improve driving efficiency is proposed. The process of pile driving in the real situation of an industrial experiment is simulated. The results of stress on test point are consistent with the test point. By analysing the stress distributed along the direction of pile radius and pile axis, the rule of the stress distribution on the pile is concluded. The rule for cushion material choice is obtained by comparing the influence for the impact stress with different elastic modulus ratio of the hammer cushion to the pile and the pile cushion to the pile.


2005 ◽  
Vol 128 (2) ◽  
pp. 359-369 ◽  
Author(s):  
Rafael Ballesteros-Tajadura ◽  
Sandra Velarde-Suárez ◽  
Juan Pablo Hurtado-Cruz ◽  
Carlos Santolaria-Morros

In this work, a numerical model has been applied in order to obtain the wall pressure fluctuations at the volute of an industrial centrifugal fan. The numerical results have been compared to experimental results obtained in the same machine. A three-dimensional numerical simulation of the complete unsteady flow on the whole impeller-volute configuration has been carried out using the computational fluid dynamics code FLUENT®. This code has been employed to calculate the time-dependent pressure both in the impeller and in the volute. In this way, the pressure fluctuations in some locations over the volute wall have been obtained. The power spectra of these fluctuations have been obtained, showing an important peak at the blade passing frequency. The amplitude of this peak presents the highest values near the volute tongue, but the spatial pattern over the volute extension is different depending on the operating conditions. A good agreement has been found between the numerical and the experimental results.


2010 ◽  
Vol 129-131 ◽  
pp. 256-260
Author(s):  
Yi Shu Hao ◽  
Chuang Hai ◽  
Xin Xing Zhu

Treating high speed milling theory as the guidance, this paper researched high speed milling process of bracket part based on UG NX. Combined with the structural features of bracket part, three dimensional model is built by UG NX CAD and machining processes are worked out after analysis. UG CAM module was applied to fabricate tool paths. At last, finite element analysis method is introduced to study the processing deformation by UG NX NASTRAN module, based on which measures to restrain processing deformations is advanced and processing sequences are optimized.


2012 ◽  
Vol 201-202 ◽  
pp. 741-744 ◽  
Author(s):  
Zhen Ning Hou ◽  
Jun Wu ◽  
Qing Wang ◽  
Hong Gen Tian ◽  
Nan Chao ◽  
...  

A finite element approach based on Ansys is developed to simulate stress intensity distribution in a three dimensional model of coupling clamp joint, which includes ferrules, pipe caps and bolts. The characteristics of stress intensity distributions of coupling clamp joint under strength pressure loading have been studied by means of the non-linear finite element method. The FE model can also predict the clamp quality and tolerances to be expected under different process conditions and define the most effective process parameters to influence the tolerances. The study could give us a better understanding on the mechanism and basis for optimization design of the coupling clamp joint.


2011 ◽  
Vol 368-373 ◽  
pp. 3052-3056
Author(s):  
Wei Jun Yang ◽  
Yong Da Yang

New full hall scaffolds with pulley-clip style formwork support system is adopted in the concert hall of Changsha. This paper presents the concept of the complete equivalent initial imperfection according to the characteristics of too many influential factors on the high formwork supporting frame,then makes the complete equivalent initial imperfectione equivalent to assumed equivalent horizontal load in order to ensure the safety of the frame. At the same time, it gets a three-dimensional model by the general finite element software ANSYS 10.0. Based on the results of experiment and finite element analysis, it gets the recommended value of assumed equivalent horizontal load. The study on the high formwork supporting frame with pulley-clip style provides some reference for other similar projects.


1989 ◽  
Vol 111 (4) ◽  
pp. 443-449 ◽  
Author(s):  
A. Fafitis ◽  
Y. H. Won

An incremental three-dimensional stress-strain relationship for concrete with induced anisotropy has been developed. The nonlinearity and path-dependency are modeled by expressing the elastic moduli at each increment as function of the octahedral and deviatoric strains, based on a uniaxial stochastic model developed earlier. Predictions of multiaxial response under proportional and nonproportional loading are in good agreement with experimental results.


Sign in / Sign up

Export Citation Format

Share Document