The Research of Flexible Solar Cells for Application in Solar Roof

2010 ◽  
Vol 160-162 ◽  
pp. 1394-1398
Author(s):  
Jin Song Lei ◽  
Zhao Qiang Zhang ◽  
Yong Yao

In this paper, we report the deposition of nano-crystalline silicon flexible solar cells on stainless steel (SS) substrates for application in solar roof. The influence of substrate treatment on the properties of material and the solar cells was studied by Raman spectroscopy, scanning electron microscope, current-voltage (I-V), and Quantum efficiency (QE) measurements. Results suggest that the properties of the Si:H thin films and solar cells were greatly improved by the substrate treatment with surface polishing and the followed Ag/ZnO electrodes deposition.

2009 ◽  
Vol 1153 ◽  
Author(s):  
Jeffrey Yang ◽  
Baojie Yan ◽  
Guozhen Yue ◽  
Subhendu Guha

AbstractLight trapping effect in hydrogenated amorphous silicon-germanium alloy (a-SiGe:H) and nano-crystalline silicon (nc-Si:H) thin film solar cells deposited on stainless steel substrates with various back reflectors is reviewed. Structural and optical properties of the Ag/ZnO back reflectors are systematically characterized and correlated to solar cell performance, especially the enhancement in photocurrent. The light trapping method used in our current production lines employing an a-Si:H/a-SiGe:H/a-SiGe:H triple-junction structure consists of a bi-layer of Al/ZnO back reflector with relatively thin Al and ZnO layers. Such Al/ZnO back reflectors enhance the short-circuit current density, Jsc, by ˜20% compared to bare stainless steel. In the laboratory, we use Ag/ZnO back reflector for higher Jsc and efficiency. The gain in Jsc is about ˜30% for an a-SiGe:H single-junction cell used in the bottom cell of a multi-junction structure. In recent years, we have also worked on the optimization of Ag/ZnO back reflectors for nano-crystalline silicon (nc-Si:H) solar cells. We have carried out a systematic study on the effect of texture for Ag and ZnO. We found that for a thin ZnO layer, a textured Ag layer is necessary to increase Jsc, even though the parasitic loss is higher at the Ag and ZnO interface due to the textured Ag. However, a flat Ag can be used for a thick ZnO to reduce the parasitic loss, while the light scattering is provided by the textured ZnO. The gain in Jsc for nc-Si:H solar cells on Ag/ZnO back reflectors is in the range of ˜60-75% compared to cells deposited on bare stainless steel, which is much larger than the enhancement observed for a-SiGe:H cells. The highest total current density achieved in an a-Si:H/a-SiGe:H/nc-Si:H triple-junction structure on Ag/ZnO back reflector is 28.6 mA/cm2, while it is 26.9 mA/cm2 for a high efficiency a-Si:H/a-SiGe:H/a-SiGe:H triple-junction cell.


2000 ◽  
Vol 609 ◽  
Author(s):  
H. Povolny ◽  
P. Agarwal ◽  
S. Han ◽  
X. Deng

ABSTRACTA-SiGe n-i-p solar cells with i-layer deposited via plasma enhanced chemical vapor deposition (PECVD) with a germane to disilane ratio of 0.72 and hydrogen dilution R=(H2 flow)/(GeH4+Si2H6 flow) values of 1.7, 10, 30, 50, 120, 180 and 240 were deposited on stainless steel substrates. This germane to disilane ratio is what we typically use for the i-layer in the bottom cell of our standard triple-junction solar cells. Solar cell current-voltage curves (J-V) and quantum efficiency (QE) were measured for these devices. Light soaking tests were performed for these devices under 1 sun light intensity at 50° C. While device with R=30 showed the highest initial efficiency, the device with R=120 exhibit higher stabilized efficiency after 1000 hours of light soaking.Single-layer a-SiGe films (∼500 nm thick) were deposited under the same conditions as the i-layer of these devices on a variety of substrates including 7059 glass, crystalline silicon, and stainless steel for visible-IR transmission spectroscopy, FTIR, and hydrogen effusion studies. It is interesting to note 1) the H content in the film decreased with increasing R based on both the IR and H effusion measurements, and 2) while the H content changes significantly with different R, the change in Eg is relatively small. This is most likely due to a change in Ge content in the film for different R.


2011 ◽  
Vol 183-185 ◽  
pp. 1837-1841
Author(s):  
Lei Sha ◽  
Yan Lai Wang ◽  
Shi Liang Ban

CuInSe2 thin films were obtained by selenization of the Cu-In precursors in the atmosphere of Se vapour, which were prepared on stainless steel and titanium substrates by electrodeposition. The films were characterized by XRD, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The respective influences of composition, phases and surface morphology of Cu-In precursors on indium loss were investigated. The results indicate that the indium loss occurs in selenization process because of volatile In2Se arising. The indium loss is less in selenization process of Cu-In precursors contained CuIn, Cu2In and In phases.


2014 ◽  
Vol 65 (2) ◽  
pp. 111-115 ◽  
Author(s):  
Miroslav Mikolášek ◽  
Michal Nemec ◽  
Jaroslav Kováč ◽  
Ladislav Harmatha ◽  
Lukáš Minařík

Abstract In this paper we present the utilization of capacitance and current-voltage diagnostic techniques to analyse silicon heterojunction solar cell structures properties, particularly focused on the inspection of the amorphous emitter and amorphous silicon/crystalline silicon hetero-interface. The capacitance characterization of investigated samples have revealed the need for improvement of the a-Si:H/c-Si heterointerface quality as a main direction to obtain superior output performance of heterojunction cells. In addition, current-voltage characterization emphasized importance for enhancement of the light management in the structure. The obtained results demonstrate that electrical and capacitance diagnostic techniques can represents important diagnostic tools in the process of optimization of solar cells.


2018 ◽  
Vol 29 (8) ◽  
pp. 1525-1533 ◽  
Author(s):  
Gilbert O Osayemwenre ◽  
Edson L Meyer ◽  
Raymond Taziwa

Defects in solar cells can be caused during processing or through a benign event like a falling leaf when operating in an outdoor system. Shading caused by such a leaf can result in the cell operating in the reverse direction and ultimately in hotspot formation, which in turn can cause the entire cell to breakdown and essentially become a power dissipator rather than a producer. More often than not, this reverse biasing of the cell will enhance the effect of any inherent defect. In this study, poly-Si cells were reverse biased to enhance the effect of their inherent defect. These defects were then analysed using non-destructive confocal Raman spectroscopy, since this technique allows us to observe small defects in cells/material using the intensity of the transverse optic bands. The intensity of defect-induced Raman band has a direct relationship with the observed morphological defects of the reverse biased cell. The quality of the active layer was also investigated; this includes the chemical composition and the stress level which can be found through the single spectrum bandwidth. The efficiency of solar material depends on the absorption capability of the solar material, while the optical and the electrical properties to a large extent determine the absorption capability of solar cell. However, its structure, defect and stress level can offset the total optical and electronic properties. The present study reveals defect in micro-level and the stress induced in the affected region of the solar cell. Confocal Raman is suitable for characterising stresses in relation to microstructure, defect level as well as the manufacturer-induced defect in the substrate.


2012 ◽  
Vol 32 ◽  
pp. 470-476 ◽  
Author(s):  
D. Gracin ◽  
K. Juraić ◽  
J. Sancho-Parramon ◽  
P. Dubček ◽  
S. Bernstorff ◽  
...  

Solar Energy ◽  
2011 ◽  
Vol 85 (5) ◽  
pp. 1085-1090 ◽  
Author(s):  
Youngkuk Kim ◽  
Sungwook Jung ◽  
Minkyu Ju ◽  
Kyungyul Ryu ◽  
Jinjoo Park ◽  
...  

2018 ◽  
Vol 36 (3) ◽  
pp. 469-476 ◽  
Author(s):  
Małgorzata Musztyfaga-Staszuk ◽  
Łukasz Major ◽  
Grzegorz Putynkowski ◽  
Anna Sypień ◽  
Katarzyna Gawlińska ◽  
...  

AbstractPotential impact of copper replacing silver in the paste used for the front electrode fabrication in crystalline silicon solar cells was investigated. The copper was applied as a new CuXX component with about 2 wt.% to 6 wt.% share of XX modifier. The generated CuXX molecules were analyzed using transmission microscopy. Based on the commercial Du Pont PV19B paste, CuXX and XX materials, the new PV19B/CuXX paste with 51 wt.% share of Cu and the PV19B/XX paste with 51 wt.% share of XX only were developed. Comparative studies of the effect of the commercial PV19B paste made by DuPont Company, and the pastes with the CuXX component and with the modifier XX alone on the electrical parameters of solar cells produced on crystalline silicon were carried out. The solar cells were characterized by the current-voltage technique. As a final result, the Cz-Si solar cell with the 51 wt.% share of Cu in the front electrode having a series resistance of 0.551 Ω·cm2, an efficiency of 14.08 % and, what is more important, the fill factor of 0.716, was obtained. It is the best result ever obtained concerning direct Cu application for solar cells fabricated in thick-film technology.


Sign in / Sign up

Export Citation Format

Share Document