scholarly journals Free-Form, High Energy Performance, Transparent Envelope

2010 ◽  
Vol 168-170 ◽  
pp. 1486-1490
Author(s):  
Luis Alonso ◽  
Benito Lauret ◽  
Fernando Alonso

This article examines, from the energy viewpoint, a new lightweight, slim, high energy efficient, light-transmitting envelope system, providing for seamless, free-form designs for use in architectural projects. The research was based on envelope components already existing on the market, especially components implemented with granular silica gel insulation, as this is the most effective translucent thermal insulation there is today. The tests run on these materials revealed that there is not one that has all the features required of the new envelope model, although some do have properties that could be exploited to generate this envelope, namely, the vacuum chamber of vacuum insulated panels (VIP), the monolithic aerogel used as insulation in some prototypes, reinforced polyester barriers. By combining these three design components — the high-performance thermal insulation of the vacuum chamber combined with monolithic silica gel insulation, the free-form design potential provided by materials like reinforced polyester and epoxy resins—, we have been able to define and test a new, variable geometry, energy-saving envelope system.

2011 ◽  
Vol 1306 ◽  
Author(s):  
Luis A. Alonso ◽  
Benito Lauret ◽  
Fernando Alonso

ABSTRACTThis article examines, from the energy viewpoint, a new lightweight, slim, high energy efficient, light-transmitting envelope system, providing for seamless, free-form designs for use in architectural projects. The research was based on envelope components already existing on the market, especially components implemented with granular silica aerogel insulation, as this is the most effective translucent thermal insulation there is today. The tests run on these materials revealed that there is not one that has all the features required of the new envelope model, although some do have properties that could be exploited to generate this envelope, namely, the vacuum chamber of vacuum insulated panels (VIP), the monolithic aerogel used as insulation in some prototypes, and reinforced polyester barriers. By combining these three design components — the high-performance thermal insulation of the vacuum chamber combined with monolithic silica aerogel insulation, the free-form design potential provided by materials like reinforced polyester and epoxy resins—, we have been able to define and test a new, variable geometry, energy-saving envelope system.


2011 ◽  
Vol 71-78 ◽  
pp. 594-597
Author(s):  
L. Alonso ◽  
C. Bedoya ◽  
B. Lauret ◽  
F. Alonso

This article examines a new lightweight, slim, high energy efficient, light-transmitting, self-supporting envelope system, providing for seamless, free-form designs for use in architectural projects. The system exploits vacuum insulation panel technology. The research was based on envelope components already existing on the market and patents and prototypes built by independent laboratories, especially components implemented with silica gel insulation, as this is the most effective transparent thermal insulation there is today. The tests run on these materials revealed that there is not one that has all the features required of the new envelope model, although some do have properties that could be exploited to generate this envelope, namely, the vacuum chamber of vacuum insulation panels, the use of monolithic aerogel as insulation in some prototypes, and reinforced polyester barriers. These three design components have been combined and tested to design a new, variable geometry, energy-saving envelope system that also solves many of the problems that other studies ascribe to the use of vacuum insulation panels.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Pyeongchan Ihm ◽  
Moncef Krarti

Optimal and cost-effective energy efficiency design and operation options are evaluated for office buildings in Tunisia. In the analysis, several design and operation features are considered including orientation, window location and size, high performance glazing types, wall and roof insulation levels, energy efficient lighting systems, daylighting controls, temperature settings, and energy efficient heating and cooling systems. First, the results of the optimization results from a sequential search technique are compared against those obtained by a more time consuming brute-force optimization approach. Then, the optimal design features for a prototypical office building are determined for selected locations in Tunisia. The optimization results indicate that utilizing daylighting controls, energy efficient lighting fixtures, and low-e double glazing, and roof insulation are required energy efficiency measures to design high energy performance office buildings throughout climatic zones in Tunisia. In particular, it is found that implementing these measures can cost-effectively reduce the annual energy use by 50% compared to the current design practices of office buildings in Tunisia.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6178
Author(s):  
Pierryves Padey ◽  
Kyriaki Goulouti ◽  
Guy Wagner ◽  
Blaise Périsset ◽  
Sébastien Lasvaux

The performance gap, defined as the difference between the measured and the calculated performance of energy-efficient buildings, has long been identified as a major issue in the building domain. The present study aims to better understand the performance gap in high-energy performance buildings in Switzerland, in an ex-post evaluation. For an energy-efficient building, the measured heating demand, collected through a four-year measurement campaign was compared to the calculated one and the results showed that the latter underestimates the real heating demand by a factor of two. As a way to reduce the performance gap, a probabilistic framework was proposed so that the different uncertainties of the model could be considered. By comparing the mean of the probabilistic heating demand to the measured one, it was shown that the performance gap was between 20–30% for the examined period. Through a sensitivity analysis, the active air flow and the shading factor were identified as the most influential parameters on the uncertainty of the heating demand, meaning that their wrong adjustment, in reality, or in the simulations, would increase the performance gap.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Daniele Cesini ◽  
Elena Corni ◽  
Antonio Falabella ◽  
Andrea Ferraro ◽  
Lucia Morganti ◽  
...  

Energy consumption is today one of the most relevant issues in operating HPC systems for scientific applications. The use of unconventional computing systems is therefore of great interest for several scientific communities looking for a better tradeoff between time-to-solution and energy-to-solution. In this context, the performance assessment of processors with a high ratio of performance per watt is necessary to understand how to realize energy-efficient computing systems for scientific applications, using this class of processors. Computing On SOC Architecture (COSA) is a three-year project (2015–2017) funded by the Scientific Commission V of the Italian Institute for Nuclear Physics (INFN), which aims to investigate the performance and the total cost of ownership offered by computing systems based on commodity low-power Systems on Chip (SoCs) and high energy-efficient systems based on GP-GPUs. In this work, we present the results of the project analyzing the performance of several scientific applications on several GPU- and SoC-based systems. We also describe the methodology we have used to measure energy performance and the tools we have implemented to monitor the power drained by applications while running.


2012 ◽  
Vol 578 ◽  
pp. 3-6
Author(s):  
Jin Yu Qu ◽  
Ru Wang ◽  
Ying Chao Zhou

Composite power supply technology is an efficient way to solve the energy performance problem of EV, it makes battery with high energy density and super capacitor which has the advantage of high power combined with together. Using the super capacitor characteristics of instantaneous large current charge and discharge, when EV in starting, accelerating or climbing, provide the actuating motor for peak current; and when in braking, absorb the generator feedback current, so as to avoid the battery are damaged, prolong its service life, and realizes the braking energy efficient recovery. In this paper according to the characteristics of battery, super capacitor, and bidirectional DC/DC converter, use backward simulation model of electric vehicle to perform drive cycle. The results show that, the work efficiency of battery is enhanced by using the super capacitor, and to make the composite power supply obtain a higher braking energy recycling efficiency.


2016 ◽  
Vol 78 (10) ◽  
Author(s):  
Rizwan Patan ◽  
Rajasekhara Babu M.

It is necessary to model an energy efficient and stream optimization towards achieve high energy efficiency for Streaming data without degrading response time in big data stream computing. This paper proposes an Energy Efficient Traffic aware resource scheduling and Re-Streaming Stream Structure to replace a default scheduling strategy of storm is entitled as re-storm. The model described in three parts; First, a mathematical relation among energy consumption, low response time and high traffic streams. Second, various approaches provided for reducing an energy without affecting response time and which provides high performance in overall stream computing in big data. Third, re-storm deployed energy efficient traffic aware scheduling on the storm platform. It allocates worker nodes online by using hot-swapping technique with task utilizing by energy consolidation through graph partitioning. Moreover, re-storm is achieved high energy efficiency, low response time in all types of data arriving speeds.it is suitable for allocation of worker nodes in a storm topology. Experiment results have been demonstrated the comparing existing strategies which are dealing with energy issues without affecting or reducing response time for a different data stream speed levels. Finally, it shows that the re-storm platform achieved high energy efficiency and low response time when compared to all existing approaches.


2020 ◽  
Vol 12 (5) ◽  
pp. 1960
Author(s):  
Rosaura Castrillón-Mendoza ◽  
Javier M. Rey-Hernández ◽  
Francisco J. Rey-Martínez

The main target of climate change policies in the majority of industrialized countries is to reduce energy consumption in their facilities, which would reduce the carbon emissions that are generated. Through this idea, energy management plans are developed, energy reduction targets are established, and energy-efficient technologies are applied to achieve high energy savings, which are environmentally compatible. In order to evaluate the impact of their operations and investments, companies promote measures of performance in their energy management plans. An integral part of measuring energy performance is the establishment of energy baselines applicable to the complete facility that provide a basis for evaluating energy efficiency improvements and incorporating energy performance indicators. The implementation of energy management systems in accordance with the requirements of ISO Standard 50001 is a contribution to the aim and strategies for improving cleaner production in industries. This involves an option for the industry to establish energy benchmarks to evaluate performance, predict energy consumption, and align production with the lowest possible consumption of primary and secondary forms of energy. Ultimately, this goal should lead to the manufacturing of cleaner products that are environmentally friendly, energy efficient, and are in accordance with the global environmental targets of cleaner manufacturing. This paper discusses an alternative for establishing energy baselines for the industrial sector in which several products are produced from a single raw material, and we determined the energy consumption of each product and its impact on the overall efficiency of the industry at the same time. The method is applied to the plastic injection process and the result is an energy baseline (EBL) in accordance with the requirements of ISO 50001, which serves as a reference for determining energy savings. The EBL facilitates a reduction in energy consumption and greenhouse gas emissions in sectors such as plastics, a sector which accounts for 15% of Colombia’s manufacturing GDP.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1165 ◽  
Author(s):  
Jiří Zach ◽  
Vítězslav Novák ◽  
Jitka Peterková ◽  
Jan Bubeník

The need for the development of new, advanced building materials increases every year, especially due to the necessary diminution of energy performance for building structures and for building production itself (including the production of building materials). Along with the energy performance problems in construction, the issue of CO2 emission associated with building and the production of building materials is also important. In the field of advanced thermal insulation materials, vacuum insulation panels (VIPs) give the best results. However, their high-energy performance and material consumption present a problem. This work represents an initial part of the development of alternative insulators, based on agricultural and textile industry waste usable in the production of VIP. This article recapitulates basic knowledge regarding key thermal insulation properties of developed insulators and their fire reactions, which impact possible usage in building structures.


Sign in / Sign up

Export Citation Format

Share Document